Acquiring real-time heating of cells in standard cell designs

Acquiring real-time heating of cells in standard cell designs
András Timár, Márta Rencz
Budapest University of Technology and Economics
Department of Electron Devices
Budapest, Hungary 1111
Email: timar|rencz@eet.bme.hu
 
Abstract—In today’s digital electronic integrated circuits device heating is one of the most critical issues. Overheating can cause failures in functionality and device malfunction. In certain circumstances overheating of ICs can cause physical destruction of the device itself. This paper introduces a solution to determine cell and gate heating curves across the standard cell IC’s surface. The presented methodology and toolset is tightly integrated into standardized logic simulator engines thus providing digital circuit designers a low-level, cell-resolution temperature distribution map during logic simulations. Actual temperatures of each consisting cell of the design can be monitored throughout the whole logic simulation. By being able to monitor temperatures of digital cells during initial simulations, it allows us to detect hot-spots and overheating caused malfunctions far before manufacture. By using the spatial location and temperature magnitude of hot-spots acquired from the presented methodology, place and route (P&R) tools can be driven to change cell placement and routing in order to avoid heating caused failures. Additionally, cooling solutions can be developed using the simulated temperature maps of the IC’s surface. 
 
Index Terms—logi-thermal simulation, temperature distribution, hot-spot detection