
Compact Policy Routing

Gábor Rétvári, András Gulyás, Zalán Heszberger, Márton Csernai, József J. Bíró
Department of Telecommunications and Media Informatics

Budapest University of Technology and Economics
1117 Budapest, Magyar tudósok körútja 2. Hungary

Email: {retvari,gulyas,heszberger,csernai,biro}@tmit.bme.hu

July 29, 2011

Abstract

This paper takes a first step towards generalizing compact routing

to arbitrary routing policies that favor a broader set of path attributes

beyond path length. Using the formalism of routing algebras we iden-

tify the algebraic requirements for a routing policy to be realizable

with sublinear size routing tables and we show that a wealth of practi-

cal policies can be classified by our results. By generalizing the notion

of stretch, we also discover the algebraic validity of compact routing

schemes considered so far and we show that there are routing poli-

cies for which one cannot expect sublinear scaling even if permitting

arbitrary constant stretch.

1 Introduction

Compact routing theory is the research field aimed at identifying the funda-
mental scaling limits of shortest path routing and constructing algorithms
that meet these limits [1–7]. Shortest path routing is a key ingredient in many
modern network architectures, as it generally ensures low transmission delay
while also minimizes the effort needed to transmit one unit of information
from the source to the destination. To what extent shortest path routing can
scale to large networks, in terms of the memory requirements of implement-
ing the local forwarding functionality at network nodes, has for a long time
been researched. It turns out that in general it is impossible to implement
shortest path routing with routing tables whose size in all network topolo-
gies grows slower than linear with the increase of the network size [1, 2]. To
answer this challenge, compact routing research seeks algorithms to decrease
routing table sizes at the price of letting packets to flow along suboptimal

G. Rétvári was supported by the Janos Bolyai Fellowship of the Hungarian Academy
of Sciences.

1

paths. In this context, suboptimal means that the forwarding paths are al-
lowed to be longer than the shortest ones, but length increase is bounded by
a constant stretch factor. By now, the research community has built a strong
theoretical foundation for compact shortest path routing, fully characterizing
its pinnacles and pitfalls on a broad catalog of network topologies including
hypercubes, trees, scale-free networks, and planar graphs [4, 5, 8–10], while
having defined efficient compact routing algorithms for the generic case as
well [3, 4].

In order to ensure an expedient flow of information through the network,
one often needs to provision routes taking into consideration a broader set
of attributes beyond mere path length, such as path reliability and resilience
constraints [11], bandwidth and perceived congestion [12–14], business rela-
tions and service level agreements between ISPs [15,16], etc. These path se-
lection strategies are usually described under the umbrella of policy routing.
Practically speaking, a routing policy is a function that selects a preferred
transmission route from the set of all forwarding paths available between
two endpoints, according to predefined requirements. Indeed, a significant
portion of the Internet today runs over policy routing [11,12,15,17,18]. Un-
fortunately, at the moment no theory is available to characterize the inherent
scaling properties of these policy routing architectures, leaving a considerable
gap in our understanding of their long term sustainability.

In this paper, we take the first steps towards filling this gap. We build
on the recent work of Sobrinho and Griffin [19–22], who lay the theoreti-
cal foundations for describing disparate routing policy structures in a single
theoretical framework using the notion of routing algebras, abstracting away
their syntactic and semantic diversity and letting us to study them in a
general, abstract sense. Using this framework, we give an algebraic char-
acterization of the scalability of policy routing. As the main contribution
of the paper, we determine the algebraic requirements for a policy to be
implementable with sublinear routing tables and we give a comprehensive
characterization of many practically important routing policies in network-
ing. By generalizing the notion of stretch, we also explore the algebraic
conditions under which the well-known shortest-path-based compact rout-
ing schemes [3,4] generalize to policy routing and we show that introducing
stretch cannot always eventuate sublinear scaling.

The rest of this paper is structured as follows. In Section 2, we intro-
duce the basic notations and models used throughout the paper. Next, in
Section 3 we characterize the local memory requirements for implementing
an important subset of routing algebras, called regular algebras, and we ap-
ply the results to real-world routing policies. In Section 4 we deal with an
algebraic interpretation of stretch and we generalize compact routing algo-
rithms to regular algebras. Then, in Section 5 we discuss some practical
considerations and finally Section 6 concludes the paper.

2

2 An algebraic model for policy routing

Let the communications network be modeled by a finite, connected, sim-
ple, undirected graph G(V,E), let |V | = n and let |E| = m. Communi-
cation between nodes is carried out by sending packets: neighboring nodes
exchange packets directly, while remote nodes communicate through inter-
mediate hops. We assume that nodes v (edges e) are uniquely identified by a
natural number ID(v) (ID(e)). We often write simply v (e) in place of ID(v)
(ID(e)). Let deg(v) denote the degree of v ∈ V and let d = maxv∈V deg(v).
An s − t walk is a sequence of nodes p = (s = v1, v2, . . . , vk = t), where k
is the length of the walk and (vi, vi+1) ∈ E : ∀i = 1, . . . , k − 1, a cycle is a
walk with s = t, and a path is a walk that visits a node at most once.

2.1 Routing algebras

Generally speaking, a routing policy can be considered as a function p∗st =
Pol(Pst) that selects from the set of available s−t paths Pst a single preferred
path p∗st according to some predefined rules. This definition is broad enough
to contain basically every conceivable policy, including extreme cases like
choosing a random path as well as traditional ones like shortest path routing.

To be more specific, we choose the abstract notion of routing algebras
from Sobrinho and Griffin to describe routing policies within this paper [19–
24]. This allows us to infer generic properties instead of having to define
particular routing policies one by one and building piecemeal compact rout-
ing frameworks. In addition, it has been shown that basically all practically
important routing policies possess an algebraic representation [21]. Thus,
we shall use the terms routing policy and routing algebra interchangeably in
this paper.

A routing algebra abstracts away the most important concepts of shortest
path routing, namely weight composition (the method of constructing the
weight of a path from the weights of its constituent edges) and weight com-
parison (expressing the preference between edges or paths). In this paper,
a routing algebra A is defined as a totally ordered semigroup with a com-
patible infinity element: A = (W,φ,⊕,�), where W is the set of (abstract)
weights that can be assigned to edges, φ (φ /∈ W) is a special infinity weight
meaning that an edge/path is not traversable, ⊕ is a composition operator
for weights, and � is weight comparison.

More formally, the following properties are presumed:

• (W,⊕) is a commutative semigroup

– Closure: w1 ⊕ w2 ∈ W for all w1, w2 ∈ W

– Associativity: (w1⊕w2)⊕w3 = w1⊕(w2⊕w3) for all w1, w2, w3 ∈
W

– Commutativity: w1 ⊕ w2 = w2 ⊕ w1 for all w1, w2 ∈ W

3

• � is a total order on W

– Reflexivity: w � w for any w ∈ W

– Anti-symmetry: if w1 � w2 and w2 � w1, then w2 = w1 for any
w1, w2 ∈ W

– Transitivity: if w1 � w2 and w2 � w3, then w1 � w3 for any
w1, w2, w3 ∈ W

– Totality: for all w1, w2 ∈ W either w1 � w2 or w2 � w1

• φ is compatible with (W,⊕) according to �

– Absorptivity: w ⊕ φ = φ for all w ∈ W

– Maximality: w ≺ φ for all w ∈ W

Given a path p = (v1, v2, . . . , vk) we obtain the weight w(p) of p by
combining the weight of its constituent edges: w(p) =

⊕k−1
i=1 w(vi, vi+1).

Then a preferred path in the algebra A between two nodes is simply one
with the smallest weight according to �:

Pol(Pst) = p∗ : w(p∗) � w(p),∀p ∈ Pst .

Now, one easily checks that shortest path routing corresponds to the algebra
(R+,∞,+,≤), while widest-path routing, where preferred paths are those
with the largest bottleneck capacity, is simply (R+, 0,min,≥). See further
examples later in Section 3.1 and Section 5.

A special family of routing algebras, called regular routing algebras, will
play an essential role in this paper.

Definition 1. A routing algebra A is said to be regular, if it satisfies the
following properties1:

• Monotonicity (M): w1 � w2 ⊕ w1 for all w1, w2 ∈ W

• Isotonicity (I): w1 � w2 ⇒ w3 ⊕ w1 � w3 ⊕ w2 for all w1, w2, w3 ∈ W

Monotonicity (M) means that prepending an edge (or path) of weight
w1 with another edge (or path) of w2 can only make it less preferred: w2 ⊕
w1 � w1. By commutativity, the same applies to appending edges/paths:
w1⊕w2 � w1. Isotonicity (I), on the other hand, requires � to be compatible
with the semigroup (W,⊕) in the following sense: if an edge/path is preferred
over some other one, then prepending or suffixing both with a common edge
or path maintains this relation.

Below are some further algebraic properties we shall often use to charac-
terize routing policies [22].

1In this paper, we use the definitions of Sobrinho [19] with the understanding that other
authors may adopt different terminology. For instance, what will be called isotonicity here
is called monotonicity in conventional order theory. The reason is that this terminology
seems to be widely adopted in the literature.

4

• Delimited (D): w1 ⊕ w2 6= φ for all ∀w1, w2 ∈ W

• Strictly monotone (SM): w1 ≺ w2 ⊕ w1 for all w1, w2 ∈ W .

• Selective (S): w1 ⊕ w2 ∈ {w1, w2} for each w1, w2 ∈ W .

• Cancellative (N): w1 ⊕w2 = w1 ⊕w3 ⇒ w2 = w3 for each w1, w2, w3 ∈
W .

• Condensed (C): w1 ⊕ w2 = w1 ⊕ w3 for each w1, w2, w3 ∈ W .

From the above, perhaps only delimitedness deserves more explanation.
This property ensures that edges can be combined in an arbitrary sequence
without the danger of obtaining an untraversable path. Intra-domain rout-
ing policies, like shortest path routing or widest path routing, are usually
delimited, while inter-domain BGP routing policies are not.

2.2 Composite algebras

An attractive feature of routing algebras is that surprisingly complex and
expressive policy constructions can be built using only an elemental set of
primitive algebras by applying simple algebra composition and decomposi-
tion operators appropriately [21]. Two of these operators have particular
importance in this paper, namely the lexicographic product operator [22]
and subalgebras.

Given two routing algebras A = (WA, φA,⊕A,�A) and B = (WB, φB,⊕B,�B

), the lexicographic product of A and B is a routing algebra A × B =
(W,φ,⊕,�) where

• W = WA ×WB, φ = (φA, φB)

• (w1, v1) ⊕ (w2, v2) = (w1 ⊕A w2, v1 ⊕B v2) for all w1, w2 ∈ WA and
v1, v2 ∈ WB

• (w1, v1) � (w2, v2) =

{

v1 �B v2 if w1 =A w2

w1 �A w2 otherwise

Note that φ is well-defined if A and B are delimited. In other cases, defining
φ needs more attention.

Proposition 1. The lexicographic product operator transforms the properties
of the constituent algebras according to the following rules [22]:

• M(A× B) ⇔ SM(A) ∨ (M(A) ∧M(B))

• I(A× B) ⇔ I(A) ∧ I(B) ∧ (N(A) ∨ C(B))

• SM(A× B) ⇔ SM(A) ∨ (M(A) ∧ SM(B))

5

The second algebra composition operator we consider in this paper is
subalgebras. Given a routing algebra A = (W,φ,⊕,�) and a weight set
W ′ ⊆ W , the restriction of A to W ′: (W ′, φ,⊕,�) is a subalgebra of A
if and only if W ′ is closed for ⊕. Subalgeras inherit the properties of the
root algebra, but new ones may also emerge. For instance, the subalgebra
(R+,∞,+,≤) of the weakly monotone algebra (R+ ∪ {0},∞,+,≤) is also
strictly monotone.

2.3 Routing model

In order to describe the complex process of policy routing and forwarding,
we generalize the model of routing functions from [1, 2]. In this model, a
packet contains a payload plus a header2 with routing related information.
Now, given a routing policy A and a graph G, a policy routing function
is a mapping R : N × N 7→ N × N together with a labeling of the nodes
LV : V 7→ N and a labeling of the edges LE : E 7→ N with the following
property: for every node pair s, t, the successive application of R

(hi+1, li+1) = R(vi, hi), ∀i = 1, . . . , k − 1

yields a preferred path p∗st = (s = v1, . . . , vi, . . . , vk = t) according to A and
corresponding edge labels li+1 = (vi, vi+1), where h1 is some appropriate
initial header. We shall say that R implements A on G for indicating that
R produces preferred paths according to A on G.

Similarly to [1, 2], we assume that node labels (or addresses) can be
encoded on c log n bits3 for some c constant. We further assume that for each
node vi ∈ V the edges emanating from vi are labeled locally: LE(vi, vj) ∈
{1, . . . ,deg(vi)}. Additionally, the edge label li+1 is understood as coming
from the local label space LE(vi) of vi. These limitations are to ensure that
no extra routing information can be encoded into the labels besides pure
identification. No such limitation exists, however, on the header size.

Now, routing according to the policy routing function R occurs as follows.
Upon receiving a packet with header h, a node u simply evaluates its local
routing function Ru(h) = R(u, h) to obtain a new header h′ and an outgoing
port at edge l. Then, u sets the packet’s header to h′ and forwards it on l. In
general, this routing model is suitable to represent oblivious routing architec-
tures, i.e., ones in which the route of a packet depends only on the contents
of the packet itself and some static forwarding information. Yet, it is broad
enough to capture basically any practically relevant forwarding scheme, like
traditional destination-based and source-destination-based forwarding, label
swapping, etc. For further details, consult [1, 2].

Introducing routing functions makes it comfortable to characterize the
local memory needed at network nodes to implement a routing policy.

2Without loss of generality, headers can be represented by natural numbers.
3Logarithms are of base 2.

6

Definition 2. The local memory requirement MA of implementing the rout-
ing policy A is defined as:

MA = max
G∈Gn

min
R∈R

max
u∈V

MA(R,u) ,

where MA(R,u) is the minimum number of bits needed to encode the local
routing function Ru, R is the set of all policy routing functions implementing
A on some graph G, and Gn is the set of all graphs of size n.

A routing policy is said to be incompressible, if MA is Ω(n). Otherwise
A is compressible. Easily, an incompressible routing policy does not scale
well, as the memory needed to store the local routing process of some node
increases with the number of nodes in at least one graph. On the other hand,
compressible routing policies scale well.

2.4 Algebraic compact routing

At this point, we have all the definitions in place to focus on our main concern
what we call algebraic compact routing: given a routing algebra describing
a particular routing policy, (i) identify the theoretical bounds on the mem-
ory requirements needed to implement that algebra and (ii) examine the
local storage vs. path optimality trade-off, that is, design compact routing
schemes that implement the algebra with sublinear local storage at the price
of letting traffic to flow along non-preferred paths, whose suboptimality is
upper bounded by some suitably defined stretch.

From the standpoint of routing, regular algebras manifest the “well-
behaved cases” [19, 20, 23]. Monotonicity and isotonicity on the one hand
guarantee that the preferred paths themselves can be obtained in polyno-
mial time using a generalization of Dijkstra’s algorithm. On the other hand,
in a regular algebra preferred paths emanating from a node always make
up a tree, allowing for a single routing entry to be maintained with respect
to each node and forwarding packets based on the destination address only.
This allows us to store local routing information on at most Õ(n) bits local
memory. We formulate these ideas as follows.

For some graph G and algebra A, define a destination-based routing func-
tion R̂ for implementing A on G as follows. Let the packet header con-
sist of the identifier of the packet’s destination and let node u forward a
packet destined to some v on the first edge lv along the preferred path p∗uv:
R̂u(v) = (v, lv). Sobrinho makes the following observation [20]:

Proposition 2. A can be implemented by a destination-based routing func-
tion on any graph, if and only if A is regular.

One easily sees that R̂ basically corresponds to destination-oriented rout-
ing tables, storing a single entry for each destination node. This leads to the
following observation.

7

Observation 1. If A is regular, then it can be implemented using O(n log d)
bits local information.

A key question in compact routing research is whether this trivial routing
function is optimal in the sense that it requires the minimum possible local
memory to encode preferred paths, or there are better algorithms using less
local space. For shortest path routing in particular, Fraigniaud and Gavoille
present the following negative result [1, 2].

Proposition 3. The shortest path routing algebra A = (R+,∞,+,≤) is
incompressible.

For shortest path routing at least, routing tables are optimal. For other
routing policies, no such results exist. Therefore, in the next section we give
an algebraic characterization of the memory requirements of policy routing.

3 Local memory requirements of policy routing

In what follows, we discuss the algebraic requirements for a routing policy
to be implementable with sublinear local storage and we also give negative
results indicating incompressibility of some practically important routing
policies.

Theorem 1. If A is selective and monotone, then it is compressible.

In fact, we shall prove a bit more. We shall show that if a routing policy
is selective, then a “preferred” spanning tree always exists, that is, for any
s, t ∈ V the only path pst contained in the tree is a preferred path. We say
that algebra A maps to a tree, if for any connected graph and any weighing
of the edges one can always find such a “preferred” spanning tree. Then,
compressibility follows as routing over a tree is possible with log n bits local
memory.

Lemma 1. A maps to a tree, if and only if A is selective and monotone.

Proof. To prove sufficiency, we construct an optimal spanning tree assuming
that the algebra is selective and monotone. Take the edges in order of non-
decreasing weight according to �, add an edge to the spanning tree T if no
cycle arises and terminate when T spans G. We show that the only in-tree
path pTst between any two nodes s and t is a preferred path over A. To
see this, take any other s − t path pst in G. Obviously, there is at least
one edge (u, v) in pst so that w(u, v) � w(i, j) for all (i, j) in pTst. Then,
due to selectivity w(pTst) ∈ {w(i, j) : (i, j) in pTst}, and by monotonicity
w(pTst) � w(u, v) � w(pst), therefore pTst is a preferred s − t path. This
proves sufficiency.

Next, we prove that if A maps to a tree then A is monotone and selective.
Easily, A is monotone, otherwise preferred paths might contain loops. Next,

8

1

2

3

w

w

w

(a) w ⊕w ≻ w

1

2

3

w1

w2

w2

(b) w1⊕w2 ≻ w2

Figure 1: Counter-examples for different violations of selectivity.

we show that if A is non-selective, then in some graphs preferred paths do
not reside in a tree. Obviously, a monotone non-selective algebra A either
contains a weight w ∈ W , so that w⊕w ≻ w (auto-selectivity), or A contains
two weights w1, w2 ∈ W,w1 ≺ w2, so that w1 ⊕ w2 ≻ w2. For both of these
cases, Fig. 1 gives counter-examples in which the preferred paths are always
through the direct edges, and so preferred paths do not make up a tree.
Thus, for any non-selective algebra there is a graph in which preferred paths
are not in a tree, which concludes the proof.

A special case of this result for minimum- and maximum-type of weight
composition operators appeared in [25], and [24] gives similar results for
special routing algebras called dioids.

Theorem 1 suggests that routing policies characterized by selective al-
gebras can be implemented using tree routing schemes, needing only loga-
rithmic sized local storage [4, 10]. In contrast to selective algebras however,
many routing policies can only be implemented using at least Ω(n) bits local
memory as the next result shows.

Theorem 2. If A is strictly monotone, then it is incompressible.

We shall prove a deeper, more general claim, of which the above is a
simple corollary.

Lemma 2. If A contains a delimited, strictly monotone subalgebra, then A
is incompressible.

Table 1: Local memory requirements of various routing policies.

Algebra Definition Properties Local memory
Shortest path S = (R+,∞,+,≤) SM, I Θ(n)
Widest path W = (R+, 0,min,≥) S, I, M Θ(log n)
Most reliable path R = ((0, 1], 0, ∗,≥) SM, I Θ(n)
Usable path U = ({1}, 0, ∗,≥) S, I, M Θ(log n)
Widest-shortest path WS = S ×W SM, I Θ(n)
Shortest-widest path SW = W × S SM, ¬I Ω(n)

9

Proof. We trace back incompressibility to the incompressibility of shortest
path routing (Proposition 3), by showing that a delimited, strictly mono-
tone algebra has subalgebras possessing the same structure as shortest path
routing. We use the following basic facts from semigroup theory [26]. Every
element w ∈ W of a semigroup (W,⊕) generates a subsemigroup, the so
called cyclic semigroup, (Ww,⊕) : Ww = {w,w2, w3, . . .} through the power
operation:

∀n ∈ N : wn =

{

w if n = 1

w ⊕wn−1 otherwise

If the ordered semigroup (W,⊕,�) is delimited and strictly monotone, then
any of its cyclic subsemigroups (Ww,⊕) is of infinite order, in which case
it is isomorphic to the semigroup (N,+) of natural numbers under addition
through the mapping f : N ↔ Ww, f(n) = wn. In addition, f is also
an order preserving isomorphism between the shortest path routing algebra
S = (N,∞,+,≤) and (Ww, φ,⊕,�) in this case, as i < j ⇔ wi ≺ wj due
to strict monotonicity. One easily checks this by observing that for any
i < j : wi ≺ wi ⊕ w = wi+1 � wj . Thus, if A = (W,φ,⊕,�) has a strictly
monotone subalgebra, then for any graph G and any labeling of the edges of
G by natural numbers as weights, we can construct a labeling using weights
from W so that a path is a shortest path in the algebra S = (N,∞,+,≤)
if and only if it is a preferred path in A. This implies that routing in A
requires at least as much local memory as shortest path routing (i.e., Ω(n)
by Proposition 3), which completes the proof.

3.1 Examples

In Table 1, we list the intra-domain routing policies studied most extensively
in the literature, together with their algebraic definition, basic properties,
and the local memory requirements as indicated by our results. Note that
all the listed algebras are delimited and regular except the last one. Here,
S is the well-known shortest path routing algebra, for which Proposition 3
provides an adequate incompressibility characterization. Easily, Theorem 2
gives the same characterization.

W denotes the widest path routing policy [12]. Here, the weight of an
edge is its capacity, the end-to-end capacity of a path equals the bandwidth
of its bottleneck edge (the one with the smallest capacity) and the higher
the capacity along a path the more preferred. Easily, this corresponds to
the selective algebra (R+, 0,min,≥), and so W is compressible by Theo-
rem 1. In particular, under the tree routing scheme due to Fraigniaud and
Gavoille [10] widest path routing can be implemented using 5 log n bit ad-
dresses and 3 log n bits local memory, or log2 n bits using the scheme of
Thorup and Zwick [4]. Similar is the case for the usable path routing strat-

10

egy (U), applied extensively in Ethernet switching4. However, the rest of the
routing policies listed in the table are incompressible.

Most reliable path routing (R) denotes the policy when edges are assigned
a reliability metric denoting the possibility that a packet will be transmitted
successfully over the edge and the path with the highest probability of success
is favored. Easily, R contains a strictly monotone subalgebra. Widest-
shortest path (WS) routing prefers from the set of shortest paths the one
with the highest free capacity [13], and shortest-widest path (SW, [12, 14]),
just contrarily, prefers the shortest one out of the set of widest paths. These
algebras can be expressed as lexicographic products of the S and W algebras
and, by Proposition 1, strictly monotone [22]. Hence, for R and WS, which
are isotone, Theorem 2 supplies the local memory requirement of Ω(n). This
characterization is tight apart from a logarithmic factor, as simple table-
based destination-oriented routing requires Õ(n) bits by Observation 1. On
the other hand, SW is not isotone. Theorem 2 holds for non-isotone algebras
as well, which supplies a Ω(n) bits local memory requirement for SW too. At
the moment, it is an open question whether this characterization is tight, as
the only trivial routing function for SW stores a separate routing table entry
for each source-destination pair, which needs O(n2 log d) bits per router.

4 Compact policy routing

As has been shown in the previous section, many practically relevant routing
policies are impossible to implement with sublinear size routing tables. In
the case of shortest path routing, a standard way to improve scalability
is to define compact routing schemes. In these schemes, paths are allowed
to be longer than the shortest one, but path increase is upper bounded
by a multiplicative stretch factor k, meaning that the paths yielded by the
compact routing scheme are at most k times as long as the shortest one.
In the followings, we characterize the routing policies that admit similar
compact implementations, at least for a sufficient abstract notion of stretch.
Consider the following definition:

Definition 3. A routing scheme is of stretch k over algebra A, if for any path
pst selected by the scheme: w(pst) � (w(p∗st))

k, where p∗st is some preferred
s− t path in A.

Note that (w(p∗st))
k = w(p∗st)⊕ w(p∗st) · · · ⊕ w(p∗st)

︸ ︷︷ ︸

k times

, which implies that

the above definition indeed generalizes the notion of multiplicative stretch
originally defined for shortest path routing.

4The fact that Ethernet runs over what is called the Spanning Tree Protocol shows the
expressiveness of Lemma 1.

11

4.1 Algebraic requirements of compact policy routing

First, we ask which routing algebras lend themselves to be implemented by
a compact routing scheme of finite stretch.

Theorem 3. If a routing algebra A is regular, then there is a stretch-3
compact routing scheme for A.

We show that the stretch-3 shortest path routing scheme due to Cowen [3]
readily generalizes to regular algebras. Below, we briefly reproduce that
scheme. For further details, see [3] and [4].

For each u ∈ V , choose some node set L ⊆ V and with each u ∈ V
associate a landmark lu as the node closest (according to A) to u in the
set L. Additionally, for each u ∈ V define a ball B(u) : {v ∈ V : w(p∗u,v) �
w(p∗u,lu)}, where p∗s,t refers to the preferred s−t path for any s and t. Finally,
let the cluster of u be C(u) = {v ∈ V : u ∈ B(v)}. When A is regular, one
can use the lexicographic lightest path algorithms in [19,20] to obtain unique
connected clusters for each u.

The routing scheme is a hop-by-hop technique. The label of node v
consists of the triplet (v, lv ,portlv,v), where v is the identifier of the node, lv
is the identifier of its corresponding landmark, and portlv,v is the local port
at lv to the first hop on the preferred path from lv to v. The packet header
is the label of the target node. The routing table at node u /∈ L consists of
(v,portu,v) tuples with respect to each v ∈ C(u) ∪ L, where portu,v is again
the local port label of the first edge along the preferred u− v path.

Packet forwarding inside a cluster occurs along preferred paths using the
entries in the local routing tables. To route a packet to a node v outside
the cluster, node u first forwards the packet to v’s landmark, from where it
arrives to v using again a direct route. In particular, when a packet with
target v arrives to a node u 6= v, u checks whether v is contained in its
local routing table. If not, then lv, the landmark of v is extracted from
the header. If u = lv, then appropriate port label is also extracted from
the header, otherwise it is looked up in the local routing table. Forwarding
terminates when u = v.

From Proposition 2, we know that if A is regular, then standard destination-
based hop-by-hop routing is correct. To show that the above scheme is also
correct, the following crucial fact is enough (observed for shortest path rout-
ing by Cowen in [3]).

Lemma 3. Suppose that A is monotone. Now, if u stores an entry in its
local routing table towards some t, then the next hop v along the preferred
p∗ut path also stores an entry to t.

Proof. Easily, by monotonicity p∗vt � p∗ut � p∗lt,t so v also stores an entry for
t.

12

Next, we show that the scheme is stretch-3 on A. As forwarding inside
clusters occurs along preferred paths, we only need to prove stretch-3 for
indirect forwarding via landmarks.

Lemma 4. If A is regular, then for any u, v ∈ V with v /∈ C(u) : w(p∗u,lv)⊕

w(p∗lv ,v) � (w(p∗u,v))
3.

Proof. (i) by assumption, w(p∗lv ,v) � w(p∗u,v); (ii) using the triangle inequal-
ity, w(p∗u,lv) � w(p∗u,v) ⊕ w(p∗v,lv) = w(p∗u,v) ⊕ w(p∗lv ,v) (the latter equlality
comes by commutativity); (iii) by isotonicity, from (i) and (ii) we have
w(p∗u,lv) � w(p∗u,v) ⊕ w(p∗u,v). Combining (i) and (iii) by isotonicity we
obtain w(p∗u,lv)⊕ w(p∗lv ,v) � w(p∗u,v)⊕ w(p∗u,v)⊕ w(p∗u,v).

Finally, we show that the local information is indeed sublinear. Obvi-
ously, addresses can be encoded on 3 log n bits. The size of the local routing
table at node u is O(|C(u)| + |L|). Using the landmark selection technique
given by Cowen one obtains a local memory requirement of O(n2/3) [3], which
is improved by Thorup and Zwick to Õ(n1/2) in [4].

An extremely interesting case is when the policy is the widest-path rout-
ing algebra W. In this case, for any n ∈ N and any w ∈ W : wn = w. Hence,
stretch-3 paths are exactly the preferred paths in this case. The same ap-
plies to any selective and monotone algebra. Thus, Theorem 3 in fact gives
an alternative proof to the claim that monotone and selective algebras are
compressible.

We argued in Section 2.4 that regular algebras are the “well behaved”
cases from the aspect of distributed routing, as they can be implemented
by destination-based routing tables. Our results so far indicate that regular
algebras are “well-behaved” from the standpoint compact routing as well:
not just that we could give a general result characterizing the memory re-
quirements for implementing regular algebras, but we also found that even
when a regular algebra turns out incompressible a stretch-3 compact routing
scheme is guaranteed to exist. In the next section, we show that if regularity
fails, then finite stretch compact routing becomes significantly more difficult.

4.2 Compact routing when isotonicity fails

We have shown that regularity of a routing algebra is sufficient to define a
stretch-3 compact routing scheme. It is an intriguing question whether it is
necessary as well. At the moment, we do not have an answer to this question.
What we can show, however, is that when isotonicity fails in a very intricate
way, then no stretch-k routing exists for any k constant.

Theorem 4. Let k ≥ 1 and let A = (W,φ,⊕,�) be a monotone algebra
with the property that for any p ≥ 2, ∃{w1, w2, . . . , wp} ⊆ W so that ∀i, j ∈
{1, . . . , p}, i 6= j:

wi ⊕ wj ≻ w2k
i and wi ⊕ wj ≻ w2k

j . (1)

13

c1

z1,1

z1,2
t4

t3

t2

t1
z2,1

z2,2

c2

w1

w1

w1

w1

w1

w1
w2

w2

w2

w2

w2

w2

Figure 2: A sample graph for p = 2, δ = 2 if the words for the target nodes
are [1, 1], [1, 2], [2, 1] and [2, 2].

Then, there is no stretch-k routing scheme with sublinear memory require-
ment at all nodes.

Proof. Borrowing the idea from [1], we present a family of graphs on which
any stretch-k implementation of A requires Ω(n) bits at some nodes. Start
with a set of nodes ci ∈ C, |C| = p ≥ 2. To each ci ∈ C, add δ ≥ 2 neighbors
zij , i ∈ {1, . . . , p}, j ∈ {1, . . . , δ} and label the edges by wi. Finally, add δp

nodes t ∈ T and connect these to the zij nodes according to the following
rule: for each t ∈ T take the alphabet consisting of the symbols (1, . . . , δ),
construct a word of length p from this alphabet and add an edge from zij to
t if the ith symbol in the word is exactly j. Label any (zij , t) edge by wi.
Fig. 2 gives an example.

By monotonicity and (1), the preferred path p∗ci,t from any ci ∈ C to
any t ∈ T is the min-hop path, so w(p∗ci,t) = wi ⊕ wi = w2

i . Fraigniaud
and Gavoille in [1] show that encoding these paths in the above family of
graphs requires Ω(n log δ) bits of storage space at the nodes in C. Intuitively
speaking, the idea is that there is an astronomical number of different graphs
in this graph family, and to encode the min-hop paths the routing algorithm
needs to be able to differentiate amongst them, which requires huge storage
space.

Unfortunately, any stretch-k compact routing scheme for k finite needs
to encode the exact same min-hop paths. By construction, any non-preferred
path pci,t goes through at least two edges of weight wj for some j ∈ {1, . . . , p}, j 6=

i, and hence is at least of stretch k: w(pci,t) � wi ⊕ wi ⊕ wj ⊕ wj
(i)
=

(wi ⊕ wj) ⊕ (wi ⊕ wj)
(ii)

� wi ⊕ wj

(iii)
≻ (w2

i)
k = w(p∗ci,t), where (i) is by asso-

ciativity and commutativity, (ii) is by monotonicity, and (iii) is by (1).

A key to the above result is the weight set with the special structure (1),
an extreme form of strict monotonicity. For k ≥ 2, (1) violates isotonicity,
therefore the theorem does not apply to regular algebras. But to many non-
regular algebras it does. For the shortest-widest path policy in particular, one
easily generates the weights wi with the required properties. Let wi = (bi, ci),
where bi denotes the capacity and ci a positive cost, and for each i = 1, . . . , p

14

Table 2: Weight composition in valley-free routing.

⊕ c r p

c c φ φ
r r φ φ
p p p p

choose bi = i and let ci = (2k)i−1. One easily checks that this construction
satisfies (1), since if i < j then bi < bj implies (bi, ci)+(bj , cj) = (bi, ci+cj) >
(bj , cj)

2k, while from ci < 2kci ≤ cj we get (bi, ci + cj) > (bi, ci)
2k. This

then implies that the shortest-widest path policy does not admit a compact
implementation by Theorem 4.

5 Practical implications

We have seen that regular algebras are the easy cases for compact policy
routing. However, many real-world routing policies do not lead to regular
algebras (or commutative, or associative algebras, for that matter). The
most prominent of these is the routing policies used by the Border Gateway
Protocol (BGP), the inter-domain routing mechanism that glues the Internet
together [27, 28]. Below, we very briefly discuss to what extent the above
algebraic treatment can be applied to BGP policy routing algebras.

BGP policy routing can be described at various levels of depth. At
the first, elemental level, BGP policy routing corresponds to the valley-free
routing policy: each edge is labeled as customer (c), peer (r) or provider
(p), and the only rule is that no path can contain a c − p, c − r, r − p, or
a r − r subpath [29]. This policy can be described by the algebra B1 =
({p, r, c}, φ,⊕,�), where ⊕ given in Table 2 and all permitted paths (i.e.,
ones whose weight is not φ) have the same preference [20, 21]. To correctly
represent the valley-free routing policy, the underlying graph is supposed to
be a digraph in which the opposite arc of a p (r) arc is always labeled as c (r,
respectively). Furthermore, ⊕ is right-associative. In line with what we see
in the Internet, it is usually assumed that every node has a valley-free route
to every other node and the network contains no provider-loops (directed p-
cycles). Even though this setting violates basically every assumption in terms
of which we stated our previous results, the basic ideas are still applicable
as illustrated below.

Theorem 5. B1 is compressible.

(Sketch). By temporarily neglecting peer arcs, split the graph to strongly
connected valley-free components (SVFC) with the property that in each
component any pair of nodes u, v can be bidirectionally connected by a
valley-free path using customer-provider arcs only. In each SVFC, valley-free
routing reduces to the selective and monotone subalgebra B′

1 = ({p}, φ,⊕,�)

15

with p ⊕ p = p. As the graph contains no provider loops, every SVFC has
a single node, call this the root node, that possesses no outgoing provider
link. Then, a straightforward extension of Lemma 1 yields that routing in-
side a SVFC according to B′

1 equals routing on an arborescence, which is
possible with O(log n) local memory. Furthermore, roots are connected in
a full-mesh due to global reachability, routing on which can be done using
O(log n) local memory by a special port labeling [30]. The combination of
these two routing schemes yields an O(log n) routing scheme for valley free
routing.

At the second level, BGP classifies paths according to the local preference
rules. A minimalistic rule contained in basically every local preference setting
is that customer paths are favored over peer and provider paths. This can
be described by the algebra B2 = ({p, r, c}, φ,⊕,�), where ⊕ again is as in
Table 2 and c ≺ r � p.

Theorem 6. B2 is incompressible. Additionally, there is no stretch-k com-
pact routing scheme for B2 for any finite k ≥ 2.

(Sketch). We show a weight set satisfying (1), from which Theorem 4 gives
the required result. Simply, let wi = c. As customer arcs are exactly provider
arcs in the reverse direction, we have that the weight of any non-preferred
path is at least c⊕ p = φ ≻ ck for any k ≥ 1.

BGP policy routing is, naturally, substantially richer than B1 or B2. At
the third level, for instance, usually path length is taken into account, leading
to the algebra B3 = B2 × S. Using the foregoing argumentation, one easily
checks that B3 is also incompressible.

6 Conclusions and open questions

Thanks to the tenacious research efforts in the field of compact routing, we
now have a remarkable insight into the theoretical scalability of shortest
path routing. Motivated by the fact that many routing applications adopt
a significantly more complex way to classify paths than pure shortest path
routing (for instance, BGP places path length only at the third place when
fixing path preference), in this paper we proposed an algebraic approach
towards generalizing the theory of compact routing to policy routing. Our
contribution is twofold: first, we presented some “landmark” theorems, which
can be used as guidelines to roughly classify routing policies based on their
algebraic properties, and second we identified some algebraic requirements
for effectively trading between path preference and memory. As an impor-
tant message, we identified regularity as the cornerstone of compact policy
routing, allowing for a generic compressibility theory to be formulated as

16

well as defining a finite stretch compact routing scheme. The fact that reg-
ular algebras are exactly the ones that can be efficiently implemented in a
distributed way [19–22] makes these algebras highly attractive for designing
future routing policies [31].

Besides answering the most elemental questions, this paper perhaps leaves
more issues open than it answers. We have seen that selectivity is sufficient
for a routing algebra to be compressible, and strict monotonicity is sufficient
for incompressibility. However, it is not clear which are the corresponding
necessary conditions. Easily, strict monotonicity is not necessary for incom-
pressibility as evidenced by the non-monotone B2 algebra. Finding a minimal
algebra that eventuates incompressibility is therefore an interesting open is-
sue. On the other hand, by requiring selectivity for compressibility we seem
to be on the safe side, since selectivity not only guarantees compressibility
but also a very appealing memory requirement of O(log n). Whether there
are compressible algebras with Ω(log n) local memory requirement is also an
intriguing problem. As pointed out in the paper, it is also an open question
whether the Ω(n) characterization for non-isotone algebras is tight, as the
only trivial routing function needs O(n2 log d) bits per router.

We have shown some real-world routing policies whose memory require-
ment cannot be relaxed, even by allowing arbitrary finite stretch. Unfortu-
nately, the widely applied BGP policy qualifies for this property. Therefore,
perhaps the most compelling question raised in this paper is “what can we
do if stretch doesn’t help?”

Acknowledgements

This work was performed in the High Speed Networks Laboratory at BME-
TMIT. This work is connected to the scientific program of the "Development
of quality-oriented and cooperative R+D+I strategy and functional model at
BME" project. This project is supported by the New Hungary Development
Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002).

References

[1] P. Fraigniaud and C. Gavoille. Memory requirement for universal rout-
ing schemes. In Proceedings of the fourteenth annual ACM symposium
on Principles of distributed computing, PODC ’95, pages 223–230, 1995.

[2] C. Gavoille and S. Pérennès. Memory requirement for routing in dis-
tributed networks. In Proceedings of the fifteenth annual ACM sympo-
sium on Principles of distributed computing, PODC ’96, pages 125–133,
1996.

17

[3] L. Cowen. Compact routing with minimum stretch. In ACM-SIAM
SODA’99, pages 255–260, 1999.

[4] M. Thorup and U. Zwick. Compact routing schemes. In ACM SPAA’01,
pages 1–10, 2001.

[5] C. Gavoille. Routing in distributed networks: Overview and open prob-
lems. ACM SIGACT News, 32(1):52, 2001.

[6] D. Krioukov, kc claffy, K. Fall, and A. Brady. On compact routing for
the Internet. ACM Comp. Comm. Review, 37(3):41–52, 2007.

[7] C. Gavoille. An overview on compact routing. In Workshop on Peer-to-
Peer, Routing in Complex Graphs, and Network Coding, 2007.

[8] G.N. Frederickson and R. Janardan. Designing networks with compact
routing tables. Algorithmica, 3(1):171–190, 1988.

[9] D. Krioukov, K. Fall, and X. Yang. Compact routing on Internet-like
graphs. In INFOCOM 2004, the Twenty-third Annual Joint Conference
of the IEEE Computer and Communications Societies, volume 1, 2004.

[10] P. Fraigniaud and C. Gavoille. Routing in trees. In ICALP ’01, pages
757–772, 2001.

[11] O. Younis and S. Fahmy. Constraint-based routing in the Internet:
Basic principles and recent research. IEEE Communications Surveys
and Tutorials, 5(1), 2004.

[12] Zheng Wang and Jon Crowcroft. Quality-of-service routing for sup-
porting multimedia applications. IEEE Journal of Selected Areas in
Communications, 14(7):1228–1234, 1996.

[13] G. Apostolopoulos, R. Guerin, S. Kamat, and S. K. Tripathi. Quality
of service based routing: A performance perspective. In SIGCOMM,
pages 17–28, 1998.

[14] Qingming Ma and P. Steenkiste. On path selection for traffic with band-
width guarantees. In Proceedings of the 1997 International Conference
on Network Protocols (ICNP ’97), page 191, 1997.

[15] M. Caesar and J. Rexford. BGP routing policies in ISP networks. Tech-
nical Report UCB/CSD-05-1377, EECS Department, University of Cal-
ifornia, Berkeley, 2005.

[16] G. Apostolopoulos, R. Guerin, S. Kamat, A. Orda, and S. K. Tripathi.
Intra-domain QoS routing in IP networks: A feasibility and cost/benefit
analysis. IEEE Network, 13:42–54, 1999.

18

[17] D. Awduche. MPLS and traffic engineering in IP networks. IEEE Com-
munications Magazine, 37(12):42–47, Dec 1999.

[18] W. Lee, M. Hluchyi, and P. Humblet. Routing subject to quality of ser-
vice constraints in integrated communication networks. IEEE Network
Magazine, 9(4):46–55, July-August 1999.

[19] J. Sobrinho. Algebra and algorithms for QoS path computation and
hop-by-hop routing in the Internet. IEEE/ACM Trans. Netw., 10:541–
550, August 2002.

[20] J. Sobrinho. Network routing with path vector protocols: theory and
applications. In SIGCOMM ’03, pages 49–60, 2003.

[21] T. Griffin and J. Sobrinho. Metarouting. In SIGCOMM ’05, pages 1–12,
2005.

[22] A. Gurney and T. Griffin. Lexicographic products in metarouting. In
Network Protocols, IEEE International Conference on, pages 113–122,
2007.

[23] C.-K. Chau, R. Gibbens, and T. G. Griffin. Towards a unified the-
ory of policy-based routing. In INFOCOM 2006, the 25th IEEE Inter-
national Conference on Computer Communications. Proceedings, pages
1–12, 2006.

[24] M. Gondran and M. Minoux. Graphs, Dioids and Semirings: New Mod-
els and Algorithms. Springer Publishing Company, Incorporated, 1 edi-
tion, 2008.

[25] B. Awerbuch and Y. Shavitt. Topology aggregation for directed graphs.
IEEE/ACM Trans. Netw., 9:82–90, February 2001.

[26] A. H. Clifford and G. B. Preston. The Algebraic Theory of Semigroups,
Volume I. Number 7 in Mathematical Surveys. American Mathematical
Society, 1961.

19

[27] G. Huston. Interconnection, peering, and settlements. In Proceedings
of the INET, 1999.

[28] F. Wang and L. Gao. On inferring and characterizing Internet rout-
ing policies. In Proceedings of the 3rd ACM SIGCOMM conference on
Internet measurement, pages 15–26, 2003.

[29] L. Gao. On inferring autonomous system relationships in the Internet.
IEEE/ACM Trans. on Networking, 9:733–745, 2000.

[30] Pierre Fraigniaud and Cyril Gavoille. Local memory requirement of
universal routing schemes. Technical Report 96-01, École Normale
Supérieure de Lyon, 69364 Lyon Cedex 07, 1996.

[31] A. Seehra, J. Naous, M. Walfish, D. Mazieres, A. Nicolosi, and
S. Shenker. A policy framework for the future Internet. HotNets-VIII,
2009.

20

