
Free-Scaling Your Data Center
László Gyarmati, András Gulyás, Balázs Sonkoly, Tuan A. Trinh

Budapest University of Technology and Economics
Department of Telecommunications and Media Informatics

Email: {gyarmati,gulyas,sonkoly,trinh}@tmit.bme.hu

Gergely Biczók
Norwegian University of Science and Technology

Department of Telematics
Email: gbiczok@item.ntnu.no

Abstract—The increasing popularity of both small and large
private clouds and expanding public clouds poses new require-
ments to data center (DC) architectures. First, DC architectures
should be incrementally scalable, i.e., the architecture should
support the creation of DCs of arbitrary size while retaining
key performance characteristics. Second, initial DC deployments
should be incrementally expandable, i.e., the architecture should
support small-scale upgrades without a notable decrease in
operation efficiency. A DC architecture possessing both properties
satisfies the requirement of free-scaling.
Recent work in DC design focuses on traditional performance

and scalability characteristics, therefore resulting in symmetric
topologies whose upgradability is coarse-grained at best. In our
earlier work we proposed Scafida, an asymmetric, scale-free
network inspired DC topology which scales incrementally and
has favorable structural characteristics. In this paper, we build
on Scafida and propose a full-fledged DC architecture achieving
free-scaling. Our main contribution is threefold. First, we propose
an organic expansion algorithm for Scafida; this combined with
Scafida’s flexible original design results in a freely scalable
architecture. Second, we introduce the Effective Source Routing
mechanism that provides near-shortest paths, multi-path and
multicast capability and low signaling overhead by exploiting
the benefits of the Scafida topology. Third, we show based
on extensive simulations and a prototype implementation that
Scafida is capable of handling the traffic patterns characteristic
of both enterprise and cloud data centers, tolerates network
equipment failures to a high degree, and allows for high bisection
bandwidth.
Index Terms—data center, scale-free, routing, fault-tolerance

I. INTRODUCTION

Fueled by the paradigm change to cloud computing, data
centers (DCs) are all the talk both in networking practice
and research today. So far, large public cloud data centers
have been dominating the scene with the likes of Google,
Amazon, Microsoft, etc. building out and maintaining data
centers consisting of tens or hundreds of thousands of servers,
serving the need of billions of users. However, another trend
is gaining momentum: more and more organizations decide to
consolidate their computing resources into small- or medium-
scale private clouds [11]. There are multiple reasons behind
the surge of private clouds. First, security and privacy issues
using a public infrastructure can be prohibitive for certain
organizations, such as governments [10]. Second, private cloud
operation policies and management procedures can be tailor-
made to the owner’s liking [11]. Finally, of course, cost is
always a deciding factor; surprisingly, operating a private
cloud could be advantageous in the long(er) run [1]. As a
consequence, the increasing proliferation of both large and
small data centers are highly likely.

Both large and small cloud structures would greatly benefit
from free-scaling, i.e., to be able to build and operate a
data center of arbitrary size, and constantly upgrade it dur-
ing its lifetime. It is straightforward to see the benefit for
small companies: they would be able to start a private data
center quickly and with a limited budget, and build it out
incrementally [22]. Note that even if servers are co-located
at a data center provider, SMEs still have to face increasing
costs as the number of servers increases. On the other hand,
upgrades are also frequently needed in large data centers,
triggered by a growing user base (private, e.g., Facebook)
or deployment of more demanding cloud applications and
getting more corporate customers (public, e.g., Amazon). As
a well-known real-world example, Facebook has upgraded its
data center facilities frequently and step-by-step [24], resulting
in a doubling of servers over the course of 7 months in
2010 [25]. Free-scaling demands two separate properties from
a data center architecture. First, the architecture should be
incrementally scalable, i.e., it should be possible to build a data
center with 1, 000 or 1, 100 nodes, while retaining the same
performance indicators. Second, the data center should be
incrementally expandable, i.e., frequent small-scale upgrades
(adding 10 servers or larger switches) should be feasible
and result in a comparably efficient data center. If coupled
with the ability to use commodity switches for connecting
servers (already partly available on site), such a free-scaling
architecture would allow system administrators to build actual
DC networks in a do-it-yourself manner. Moreover, if the
processing and storage requirements of the given organization
change over time, it would be possible to reuse existing
equipment when expanding the network.
Albeit networking infrastructure issues inside a DC have

received tremendous attention from the research community
in recent years, as evidenced by innovative designs both
for network fabric [12], [26] and topology [2], [14], [13],
with scalability, fault-tolerance, and high bisection bandwidth
in focus, far less emphasis has been put on incremental
properties. For example in case of recursive DCell [14], it is
required that “the minimal quantum of machines added at one
time be much larger than one”. Generally speaking, state-of-
the-art DC topologies need to preserve their symmetry in order
to achieve their demonstrated high performance. Symmetry in
turn, especially for sophisticated topology concepts, results in
the type of scalability which only manifests itself at well-
defined network sizes. MDCube [34] was designed to provide
a way to create DCs of different size, its coarse-grained scale
(around 1,000 servers per box), differing requirements (being

2

economical is more important then being power-dense) and
the foreseeable price of hardware repair and software upgrade
(likely carried out by transporting whole containers back to
their respective vendors) can be prohibitive for SMEs on a
budget [20]. LEGUP [8] leverages hardware heterogeneity to
reduce the cost of upgrades in fat-tree based data centers.
Jellyfish [32] proposes a random graph topology to facilitate
upgradability of data centers; an interesting idea, however,
Jellyfish sacrifices structure creating a significant challenge
for their future routing mechanism.
In our earlier work we proposed Scafida, an asymmetric,

scale-free network (SFN) inspired data center topology [16].
At the structural level, Scafida exploits the inherent small
diameter and fault-tolerance of scale-free networks, while it
copes with the number and physical constraints (i.e., available
ports) of available servers and switches. The node degrees are
limited by extending the original preferential attachment algo-
rithm of Barabási and Albert [5]. The Scafida structure (while
preserving the favorable properties of scale-free networks) can
be adjusted on a fine-grained scale regarding network size, and
performs comparably well to the recently proposed symmetric
DC topologies at various network sizes. Scafida satisfies
the incremental scalability requirement; however, in [16] we
focused on the justification of the topology itself, leaving
practical data center operational aspects such as incremental
expansion, routing and implementation for future work.
In this paper we address these very issues and extend the

Scafida topology to a full-blown data center architecture. Our
main contribution is threefold:
1) We propose an organic expansion algorithm with
which it is possible to upgrade an existing Scafida
data center in fine-grain increments. The expanded data
center performs almost identically to the original one.
Put together with its incremental scalability, Scafida
satisfies the requirements of free-scaling.

2) At the networking level, we propose Efficient Source
Routing (ESR), inspired by efficient paths in complex
networks, which provides near-shortest paths, multi-
path capability, efficient multicasting and low signaling
overhead. The proposed routing mechanism together
with the underlying topology demonstrates the ability to
efficiently handle the traffic pattern characteristic of both
cloud and enterprise data centers, to tolerate network
equipment failures to a high degree, and to allow for
high bisection bandwidth.

3) We design and implement a prototype for Scafida. We
validate the operation of the prototype both in a virtual
test network with several hundreds of nodes and a live
testbed with firmware-modified commodity switches.

The rest of the paper is organized as follows. Section II gives
an overview of the Scafida topology and its favorable structural
properties for flexible data center usage. Section III proposes
an incremental expansion mechanism. Section IV describes
ESR including addressing and forwarding with Bloom filters,
the basic routing algorithm and fault-tolerance. Simulation
results are shown demonstrating the routing performance of
our design. Section V describes our prototype implementation

(a) Original scale-free network (b) Scafida with 8 as the maximum
degree

Fig. 1. Scale-free vs. degree-limited Scafida networks [16]

and provides validation experiments. We discuss important
cost implications of our design in Section VI, while related
work is briefly presented in Section VII. Finally, we conclude
in Section VIII.

II. BASICS OF THE SCAFIDA STRUCTURE
This section reviews the basic properties of the Scafida

data center structure. First, we briefly review our topology
generation algorithm and the properties of the generated
topology. Afterwards, we discuss Scafida’s scalability in both
the traditional and the incremental sense.

A. Basic properties
The goal of this part is to summarize the basic properties

of Scafida data center topologies including structural perfor-
mance characteristics; for additional details please refer to
[16]. By structural, we mean properties which are independent
of routing, virtualization techniques, and actual application
types.
Structure generation. Our topology generation algorithm

is a modified version of the preferential attachment algorithm
of Barabási and Albert [5]. The network structure is generated
iteratively, i.e., nodes are added one by one; a new node is
attached to an existing node with a probability proportional to
the existing node’s degree. Our method artificially constrains
the number of links that a node can have, i.e., the maximal
degree of the nodes, in order to meet the port number of servers
and switches as commodity switches usually come with 4, 8,
16, 24, or 48 ports. We illustrate the difference between scale-
free and Scafida networks in Figure 1.
Path length. As the servers of a data center communicate

with each other, the average length of the paths between the
nodes can fundamentally impact the performance of the data
center network. In [16] we demonstrated that irrespective of
the size of the networks, the average path lengths increase
moderately with stricter constraints on the maximum degree.
Bisection bandwidth. Some applications (e.g., MapReduce

[9]) require intensive communication among the servers of
the data center; bottlenecks in the topology would cause
performance degradation. The throughput capability of a data
center can be measured with bisection bandwidth. In case of
Scafida, the degree limitation does not effect the bisection
bandwidth values of the topologies.

3

Fault tolerance. Due to their specific structure scale-free
networks tolerate the random failure of nodes well [3]. This
resilience comes handy in data centers, where random failures
are bound to happen due to the large number of nodes. On top
of that, constrained Scafida demonstrates even better behavior
since there is no high-degree switch that can fail; therefore, a
possible failure affects only a smaller part of the network. As
Scafida data centers can be built using commodity switches
similar to state-of-the-art DCs, Scafida is not more vulnerable
to network failures—including attacks—than state-of-the-art
systems.
Comparison to the state-of-the-art. Recently proposed

data center architectures trade off incremental scalability and
expandability for performance. Scafida can achieve compara-
ble structural performance, while still being freely scalable.
Due to its flexibility, Scafida networks can be created out of
the parts of given state-of-the-art data centers. Accordingly, the
performance of the topologies can be compared. Scafida has
similar bisection bandwidth and average shortest path lengths
as state-of-the-art architectures.

B. Scalability
Traditional scalability. Scafida scales extremely well in the

traditional sense. In order to quantify the impact of network
size on important benchmarks, we carried out extensive simu-
lations on data center topologies of different sizes and degree
constraints. Mean values on average shortest path length
(SPL), network diameter (D) and bisection bandwidth (BB)
are shown in Table I (50 simulation runs). Note that standard
deviation values of SPL and D are around 1 and independent
of network size, while standard deviation values of BB are
around 21 (1000 nodes), 50 (5000 nodes), and 325 (10000
nodes), respectively, and independent of degree constraints.
Both average shortest path length and diameter scales logarith-
mically, while bisection bandwidth scales linearly with respect
to network size. On the other hand, constraining maximum
node degrees has only a moderate effect on performance; the
comparison of the two extremes (8 vs. No Limitation) shows
only minor differences.
Incremental scalability. The first requirement of free-

scaling is that a proper topology should be generated out of
any reasonable number and types of servers and switches. Due
to its iterative, node-by-node topology construction, and its
capability to take hardware constraints into account, Scafida
satisfies this requirement at the structural level. Note, that
we assume a reasonable ratio of switches and servers and a
satisfactory number of ports (requirements for any data center
topology). In the next section, we demonstrate that Scafida
can also be expanded incrementally without sacrificing the
beneficial properties of the topology.

III. INCREMENTAL EXPANSION
The structure of a freely scalable data center should also

allow for organic expandability: any reasonable number of
switches and servers could be added to an already existing
network while retaining its preferable characteristics. Next,
we propose an iterative algorithm that can increase the size
of Scafida data centers efficiently. The method extends a

Scafida topology by adding any given set of new switches and
servers to the network. Additional switches are not added to
the edge of the topology, instead they are replacing existing
devices with fewer ports. The pseudocode of the expansion
algorithm is presented in Figure 2. The algorithm works on
the logical topology, represented by the set of nodes ordered
by their degrees (from servers through small switches to large
switches). In a bottom-up manner, it determines which new
switches should replace devices lower in the degree-hierarchy,
demoting the replaced switches to the next tier. Sequential
expansion points are determined probabilistically giving much
larger chance to higher degree nodes (this facilitates placing
larger switches in the middle of the topology). Contrary to a
top-down approach, the bottom-up construction assures that
even servers could be replaced with a large switch at the end
of a replacement series; however, the probability of this event
is low.
As an example, suppose we would like to expand a topology

consisting of switches with 4 and 8 ports, with a 16-port
switch. The switch replacement process happens in a bottom-
up approach. Namely, first we determine randomly which
server will be replaced with a 4-port switch, then a random
4-port switch is replaced with an 8-port switch, finally a
randomly selected 8-port switch is replaced with the 16-port
switch. After the new switches are added to the topology,
additional servers can be deployed by connecting them to the
topology based on the preferential attachment principle.
To quantify the goodness of the method, we incrementally

expanded the size of 1000-server Scafida data centers then
we compared the properties of the expanded data centers with
Scafida networks, freshly generated out of the same set of
network elements. The results in Figure 3 indicate that Scafida
data centers can be organically and efficiently expanded as the
performance properties of the networks are nearly identical.
Put together, demonstrated incremental scalability and or-

ganic expandability equal to the Scafida structure eventuates
free-scaling.

IV. EFFICIENT SOURCE ROUTING

Here we propose the Efficient Source Routing (ESR) mech-
anism that exploits the favorable properties of the Scafida
topology, while addressing the routing challenge posed by
the asymmetric and heterogeneous structure. ESR applies
the paradigm of source routing motivated by the following
reasons. First, source routing offers tight performance man-
agement and multipath capability for load-balancing. Second,
a data center is typically operated by a single organization;
therefore, there are no prohibitive, Internet-related security
problems, and global topology is known by the operator. Third,
the topology of a data center is static, especially compared to
the Internet.
In this section, first, we introduce the applied addressing

scheme, second, we describe the path selection procedure and
error recovery, and finally, we evaluate routing performance
by simulation.

4

TABLE I
SCALING PROPERTIES OF SCAFIDA WITH DIFFERENT DEGREE CONSTRAINTS (SPL MEAN, D MEAN, BB MEAN)

Size 8 16 24 48 No Limitation
1000 5.03, 9.5, 1000.38 4.58, 8.9, 999.59 4.41, 8.7, 999.97 4.18, 8.0, 1001.31 4.06, 7.9, 1001.79
5000 6.15, 11.1, 5007.74 5.54, 10.0, 5009.48 5.30, 9.9, 5008.01 5.02, 9.8, 5008.32 4.73, 8.9, 5010.69
10000 6.62, 12.0, 10339.72 5.93, 11.0, 10298.38 5.67, 10.2, 10314.56 5.37, 9.9, 10313.38 5.01, 9.9, 10299.53

Input:
G = (V,E) — the Scafida topology
nt0 — number of new servers
pt0 — number of servers’ ports
nt1 , . . . , ntk — number of new ti type switches
pt1 , . . . , ptk — number of ports of ti type switches
ati — number of ti type switches already added
dv — degree of the node v ∈ V
bv — maximal possible degree of the node v ∈ V
m — number of links a newly added node has

Algorithm
1 ati = 0 ∀i
2 for v ∈ V do

// determine the type of the nodes
3 bv = pti where pti−1

≤ dv ≤ pti
4 for i ∈ [1, . . . , k] do
5 while

∑
j≥i atj <

∑
j≥i ntj do

6 R = {} // feasible expandable nodes
7 for v ∈ V do
8 if bv = pti−1

then
9 R = R ∪ {v}
10 if i = 1 then
11 nt0+ = 1 // an additional node to be

added
12 c = random(R) // a random node
13 bc = pti // expand the node
14 ati+ = 1
// add the new nodes

15 for i = 1, . . . , nt0 do
16 R = {} // for preferential attachment
17 for v ∈ V do
18 if bv > dv then
19 for j = 1, . . . , bv − dv do
20 R = R ∪ {v}
21 while |T | < m do
22 repeat
23 vt = random(R) // a random item of R
24 until vt /∈ T
25 T = T ∪ {vt}
26 V = V ∪ {wi} // add a new node
27 for v ∈ T do
28 E = E ∪ {(wi, v)} // add a new edge

Fig. 2. The expansion algorithm

A. Addressing and Forwarding: Bloom Filters

Since they have stochastically heterogeneous topologies,
routing on traditional IP addresses would be inefficient in
Scafida networks. As node addresses cannot be aggregated
properly, routing tables sizes would be large, which contradicts
the goal of applying low-end, commodity network equipments.
Accordingly, ESR addressing is based on Bloom filters [7].

Unique identifiers are generated for every link in the topology;
these are the Bloom IDs of the links. In order to create a
Bloom address for a target server, every single link identifier

1100 1250 1500 1750 2000
3

4

5

6
Avg. shortest path length

Original
Expanded

1100 1250 1500 1750 2000
6

7

8
Diameter

Original
Expanded

1100 1250 1500 1750 2000
1000

1500

2000

2500

Number of servers

Bisection bandwidth

Original
Expanded

Fig. 3. Scafida can be expanded efficiently

along the chosen path is summed up using the bitwise OR
operator, from source to target. The resulting Bloom address,
stored in the packet header, contains the routing information
for the packet, i.e., the used links are implicitly stored. Bloom
addresses have local validity, meaning that a demand can be
routed to the specific target only from the source server where
the Bloom address was generated. Note, that address size is
fixed for all path lengths.
As the packet traverses through the network, along with

its routing information coded into the Bloom address, in-
termediate switches inspect it. Any given switch compares
the address of the packet with the IDs of their outgoing
interfaces; the packet will be forwarded on the matching links
(except for the incoming link, to avoid loops). Note, that the
forwarding procedure inherently supports multicast; the source
node just has to code all desired link IDs into the Bloom
address. Network switches execute the bitwise AND operation
exclusively, which has modest resource requirements. This
is in line with the implications of recent data center traffic
measurements [6], i.e., due to the high arrival rate of the flows,
forwarding/routing decisions have to be made quickly.
False positive matches can occur in case of applying Bloom

filters. Should such a false positive arise at a switch, the
packet would also be forwarded on an additional link, creating
unnecessary overhead and may also eventuate forwarding
loops. The probability of such an occurrence depends on the
size of the ID space; i.e., if the links are labelled by longer
IDs, the possibility of a false positive match decreases. As
an illustration, we computed the applicable Bloom ID lengths
for different data center sizes assuming that the probability of
false positive matches cannot exceed 10−4. Thus, the lengths

5

of Bloom IDs are 59, 73, 87, and 102 in case of DC with 500,
1000, 5000, and 10000 servers, respectively. A relatively small
Bloom filter can eventuate a small false positive probability. In
addition, Scafida can benefit from false positive-free operation
by choosing false positive free paths exclusively similarly as
in [30], employ smart techniques to avoid loops [31] or utilize
soft-states in switches.
Clearly, Bloom filters can efficiently accommodate the vari-

able length of paths in Scafida data centers. In addition, the
application of Bloom filters offers built-in multicast support.
Multicast emerges as a crucial routing level capability for data
centers, since numerous cloud applications include routines
where the same data have to be shared with multiple other
servers (1-to-n pattern); MapReduce [9] being the best known
example. In Scafida, creating multicast packets is as easy as
creating unicast packets; the Bloom IDs of all desired links
should be incorporated into a single Bloom address.

B. Path Computation
The Scafida structure is inspired by scale-free networks;

thus, the path computation mechanism of ESR is based on
the efficient routing algorithm [35] that has been designed for
networks generated with the Barabási–Albert method. It avoids
overloading high-degree network nodes (so-called hubs) by
weighting links with the degree of the nodes; the weighting
factor is denoted by β. Accordingly, traffic load is spread in
the network resulting in improved available bandwidth condi-
tions, and hence decreasing oversubscription—a key metric in
today’s data center networks.
In order to exploit and adapt to the properties of the Scafida

structure, we slightly modify and extend the efficient routing
mechanism. First, we design ESR to be a source routing
scheme, where the computation of end-to-end paths and Bloom
addresses is carried out exclusively by the servers. Second,
ESR determines not only the shortest efficient paths between
source and destination based on the weighted topology, but
also derives the paths that are only reasonably longer than
the shortest paths. The path length scaling factor (stretch) is
denoted by γ. Based on γ, ESR calculates multiple paths
between the end-points; some paths may have an additional
hop compared to the shortest efficient paths, but this does not
affect routing performance noticeably. This extension assures
that the ESR method derives multiple paths even if the data
center is built out of identical switches. Finally, two paths
are picked randomly from the feasible paths: one for routing
the packets of the flow and one as a backup that can be used
immediately in case of failures. All packets of a given flow are
routed on the same path; however, the load of multiple flows is
spread on multiple paths. Accordingly, ESR achieves adequate
load-balancing in Scafida data centers. The ESR algorithm is
defined in Figure 4. Note that the size of routing tables is
manageable, as each server is only required to store entries
for other servers to which an active flow exists.
A recent measurement study [6] revealed that data center

traffic is dominated by very short flows. In such a dynamic
environment, a source routing scheme which probes the net-
work for good end-to-end paths when a new flow is initiated
(e.g., BCube’s BSR [13]) is ineffective; the results of such

Input:
G(V,E) — the Scafida network
β,γ — parameters
dv — degree of node v
s — the source of the demand
t — the target of the demand

Algorithm
1 for e = (n1, n2) ∈ E do
2 we = dβn1

// weight of the link
3 sp = shortestPath(s, t,w)
4 c = cost of sp
5 feasiblePaths = []
6 for ∀p between s and t do
7 cp = cost of p
8 if cp ≤ c · γ then
9 feasiblePaths← p
10 ep = random(feasiblePaths), bp = random(feasiblePaths \ {ep})

Fig. 4. Path computation in Efficient Source Routing

probes are probably not valid by the time packets start to
traverse the chosen route. ESR does not require any kind
of signaling during normal operation. Instead, ESR relies on
its load-balancing enabled path computation, and achieves
good results. As a bonus, commodity switches do not have
to respond to probes, hence saving valuable resources.

Example.We illustrate the Efficient Source Routing method
in Figure 5; only links of interest are shown (actual switch
degrees in parentheses). Server A wants to send packets to
server B; the ESR method is run at server A to determine the
path on which the packets will traverse. Let us suppose that
the ESR is operated with β = 1 and γ = 1.1. In this case,
the length of the upper path is 16 + 4 + 4 + 16 = 40 while
the value of lower path is 16 + 24 + 16 = 56. Accordingly,
the upper path is the only feasible path as the lower path is
longer than 40 · 1.1 = 44. By selecting the upper path, the
flow avoids those links where high utilization is more likely
as they are connected to switches with higher degrees. The
impact of γ can be illustrated if γ = 1.4 is used, in this case
both paths are feasible and therefore one is picked randomly.
On the contrary, in case of β = 0 the lower path is selected as
it has only four hops as opposed to the five hops of the upper
path.
Assume the latter scenario, hence the path A → 3 → 4 →

5 → B is chosen by the path computation procedure. Next,
the Bloom IDs of the affected links are aggregated into a single
Bloom address of 011011 (boxed). The packet first arrives at
switch 3, where the in-packet Bloom filter only matches the
link that goes towards switch 4. Similarly, the Bloom address
of the packet is compared to the link IDs at switch 4. As
the packet only matches the 01000 pattern (other links not
shown), it is forwarded towards switch 5. There, the address
matches the link ID towards server B, therefore, the packet
follows that link, and arrives at server B. Now, if server A
wants to send a multicast packet to both Server B and C, it
has to compute the in-packet Bloom filter accordingly. Let us
assume that the path computation procedure selects the same
path towards server B, and A → 3 → 4 → 5 → C for server

6

Fig. 5. Illustration of the Efficient Source Routing mechanism; switches are
numbered (degree in parentheses) and Bloom link IDs are shown

C. As the link 5 → C has the Bloom ID of 10000, the resulting
Bloom address will be 111011. This address will match both
links depicted at switch 5; thus, the packet is delivered to both
destination servers.

C. Failure Handling

The Scafida structure inherently tolerates network failures
owed to its scale-free network inspired design as noted in
Section II. At the routing level, network failures are handled
as follows. Failure of a network link is detected by the two
neighboring nodes based on the loss of connection at the
link layer. Failure of a switch/server is detected as multiple
link failures by all neighboring nodes. Upon detecting a
failure, a node generates a network failure (NF) control packet
and sends it on all of its active links. The control message
is propagated in the network based on a pruned broadcast
method; accordingly, all servers will be aware of the network
failure. The active paths that are affected by the failure are
switched to their backup paths, while new flows are routed
based on the updated network topology using the ESR method.
The NF control message has a Bloom address of 11. . . 1;

thus, it will match every possible Bloom ID at the switches.
The source of the packet is set as the Bloom ID of the
unavailable network link. The source addresses of the control
messages are stored at every switch for a given, short time
period (as a soft-state). An incoming NF packet is forwarded
only if it is not present in the failed links table; otherwise,
the packet is dropped. On the other hand, if a network
failure is corrected, a network recovery (NR) control packet is
broadcasted in the network; consequently, notifying the servers
about the availability of the restored network equipment.
The proposed failure handling method does not have a

significant impact on the performance of Scafida data centers:
the generated control traffic overhead is proportional to the
number of failures in the network. Based on [12], the number
of simultaneous network failures is usually below a few
hundred in very large data centers; thus, the aggregate load
of the failure control messages is negligible compared to the
throughput capability of the data center networks.

D. Routing Performance

We have evaluated the proposed ESR mechanism in a dis-
crete event simulator. Traffic was simulated at the flow-level,
assuming fair sharing of link bandwidth among competing
flows. Here, we investigate two different scenarios: the impact
of ESR weighting parameter β and ESR fault tolerance.

0 0.2 0.4 0.6 0.8 1
20

50

80

110

140

160

Beta parameter

A
vg

. p
er
−f

lo
w

th
ro

ug
hp

ut
 [M

bi
t/s

]

1000
5000

Fig. 6. The effect of the weighting factor β on per-flow throughput

0 5 10 15 20
0

5

10

15

20

Percentage of link failures

Pe
rc

en
ta

ge
 o

f
fa

ile
d

de
m

an
ds

ESR

Fig. 7. Flow abortion ratio as the function of network failures

First, we created 1000- and 5000-server Scafida topologies
with m = 2, pt0 = 2 and switch size distribution of
(60,50,40,30,17) for the 1000-server and (300,250,200,150,85)
for the 5000-server topology, with switches having 4, 8, 16,
24, or 48 ports. We simulated 1000 flows with exponentially
distributed inter-arrival times (λ = 1000 to ensure significant
competition among flows) and lognormal (ln N(10,2) from
[6]) flow size distribution. The 1000 flows were destined at a
randomly chosen group of 100 servers to induce meaningful
cross-traffic. Link capacities were uniformly set to 1 Gbit/s,
and ESR’s stretch bound was γ = 1.1. Results in Figure 6
are averaged over 20 simulation runs per parameter setting.
β has a profound effect on per-flow throughput: the β = 0

case is shortest path routing, and it is clearly inferior to
efficient routing with some larger weighting parameter. Also,
too large β values will result in congestion, hence lower per-
flow throughput. Note that the throughput values are higher
in the larger topology because of the increased number of
possible efficient paths.
Second, we investigated the fault tolerance properties of

ESR (λ = 500 for inter-arrival times, β = 0.5, γ = 1.3).
Results in Figure 7 show that ESR reacts well to network
equipment failures, resulting in almost 90% of flows com-
pleted even at a 20% link failure ratio. We can conclude that
ESR utilizes the inherent fault tolerance of the underlying
Scafida topology in an efficient manner.

V. IMPLEMENTATION AND VALIDATION

As a proof of concept we implemented a prototype of
Scafida in OpenFlow [23]; the implementation is available at
[33]. Note that we chose OpenFlow because we are familiar
with it, however, no part of the architecture is specific to Open-
Flow. Besides illustrating the basic functionality of Scafida
in the followings we briefly describe the implementation of

7

several advanced features like multipath routing, multicasting,
and failure discovery.

A. Main operation
For bootstrapping the system we use the NOX controller

[23] to configure all the switches in the network. The join
of a switch to the controller triggers the downloading of the
configuration data in the form of permanent wildcarded flow
entries dedicated to each port. A single flow entry contains
a Bloom ID in the destination MAC address field and an
output action to the appertaining port, while all other fields
are wildcarded. If a given port connects the switch to a host,
a MAC address modifying action is initiated to ensure packet
delivery to the host. By the end of the configuration process
flow tables of switches contain as many entries as they have
ports containing the appropriate Bloom ID to port mappings.
After the switches are configured, the Scafida network is

up and running and ready to route packets between the host
machines. On each host, we run a Scafida daemon keeping
track of the correct Bloom filter encodings of the paths towards
all possible destinations. This daemon is aware of the actual
topology, and it sets the ARP cache of the host to contain
the destination IP to Bloom filter mappings. Therefore, upon
sending a packet the host consults its ARP cache and retrieves
the appropriate Bloom filter as the MAC address of the
destination. In each switch, the Bloom filter matches only
one1 entry that indicates the appropriate output port. The last
switch on the route replaces the destination MAC address of
the packet with the MAC address of the host, and the packet
gets delivered. The backward process works the same way.
Note that the NOX controller is not involved in the forwarding
operations.
This type of operation also makes it easy to introduce

flow-level multi-path communication. The ESR routing im-
plemented in the Scafida daemon updates the ARP cache
frequently, so the incoming flows retrieve different Bloom
filters for the same IP address from the cache, thereby com-
municating on multiple paths with the same host.

B. Multicast
The application of Bloom filters makes it possible to im-

plement multicast in a simple way. If a Bloom filter matches
multiple flow table entries in a switch then forwarding on
all matching output ports naturally realizes multicast. Since
OpenFlow supports routing based only on the first matching
entry in the flow table we extended the implementation of
Open vSwitch [27] to be able to seek for multiple matches
in the flow table. In order to have both multicast and the
high performance of first match based forwarding, we mark
the multicast packets in the header, and multiple matching is
triggered exclusively when receiving a multicast header. This
way the processing of a unicast packet happens pretty much
the same way as before, maintaining high performance unicast
forwarding.
The implementation of the multiple matching process relies

on processing lists of matched rules. When a packet is received

1Note that we choose false-positive free routes exclusively.

0 5 10 15
0

100

200

300

400

Timestamps [sec]

Id
 o

f t
he

 p
ac

ke
ts

Cable unplugged

Flow restored

(a) Failure discovery on Scafida testbed

100 101 102 103 104
1

5
10

50
100

500
1000

Number of packets

C
D

F
(N

um
be

r o
f p

or
ts

)

multipath
no multipath

(b) Multipath efficiency
Fig. 8. Measurements

by the switch, it scans through the complete classifier flow
table for matching entries. If there is a match, the associated
classifier rule is concatenated to a list (this list is empty in the
beginning of the process). When the scan passes the last entry
in the flow table, the multiple matching process is finished, and
the actions associated to the matched rules can be put together
in a meta-rule to be performed. At the end, the meta-rule is
installed on the data path.

C. Failure discovery
Discovering link failures and notifying end hosts are basic

processes in Scafida to calculate the source route Bloom
addresses in an up-to-date manner. To discover link failures
the Scafida prototype uses heartbeat messages and timers ac-
cording to the standard Link Layer Discovery Protocol (LLDP)
[19]. If a switch does not receive an LLDP packet on a given
port before its timer expires, then it assumes a link failure
and triggers an intelligent flooding of this information. If an
LLDP packet is received through a port for which the timer is
previously expired, then a link recovery is assumed which also
eventuates pruned flooding. The switch that receives the link
failure/recovery message creates a non-permanent wildcarded
flow entry containing the Bloom ID of the appertaining port
in the source MAC address field, wildcards all fields except
the source MAC address and associates a drop action with
it. This way, upon receiving this notification multiple times,
the message is dropped. Unfortunately, OpenFlow implements
LLDP currently only in the controller, therefore, this feature
scales poorly in the prototype.

D. Measurements
To validate and evaluate the implementation, we have estab-

lished a 19 node Scafida network in a laboratory environment.
The testbed consists of two types of commodity switches,
namely 2 pieces of a 24-port HP ProCurve 6600, 7 pieces

8

of TP-Link TL-WR841ND 4+1 port switches, and lab PCs.
The commodity switches need special firmware to support
the OpenFlow protocol. In case of HP switches, we use the
v2.02s (K.14.77) OpenFlow-capable firmware while the TP-
Link devices are operated by OpenWRT [28] Backfire 10.03.1-
rc4 with the OpenFlow extension. 2 We use NOX v0.8.0
OpenFlow controller operating in out-of-band control mode
in a separate management network.
Next, we demonstrate the failure discovery mechanism of

the network. We establish a single flow between two servers
and after a while unplug a cable on the communication route.
In Figure 8(a), the IDs of the received packets are plotted
against the timestamps at the receiver side. The link failure is
detected by the system and the information is propagated to
the end hosts, thus, the sender changes the Bloom address to
send the packets on a different path. The recovery mechanism
is performed within 4 sec in this scenario and the transmission
is continued. This behavior is affected by the time parameters
of the discovery application of NOX, as well, and inadequate
parameters can lead to oscillation of the network. 3 We
emphasize that the efficiency and scalability of the mechanism
can be enhanced by implementing LLDP in the switches.
To investigate multipath efficiency we run a measurement

on a 484-node Mininet [21] network, an emulated OpenFlow
testbed. We started 100 flows with 100 packets each between
two random hosts of the DC, which traversed on diverse
routes according to ESR. Figure 8(b) shows the CDF of the
tx/rx statistics of the ports over all switches in the network
compared to the case when no multipath is issued. One can see
that the 10000 packets travel along the same path when there is
no multi-path capability, which eventuates large rx/tx values,
while ESR effectively distributes the load among numerous
ports in the network.

VI. COST CONSIDERATIONS
Simulation results and experimental evaluation show that

our approach satisfies its design goals and is worth considering
in production networks, especially for SMEs and NPOs with
ad-hoc network expansion opportunities and on a strict budget.
With that said, there are certain areas of expenditures for
deeper consideration.
Customizing for a set budget. Throughout the paper we

assumed a fixed set of available commodity hardware, over
which a data center should be built. While this is a plausible
scenario, an organization can also have a fixed budget to spend
on hardware and zero available equipment. Upon gathering
pricing information, our simulation tools could be used to
choose an optimal set of switches and servers resulting in the
best performing Scafida data center. A recent cost comparison
of several data center architectures discussed cases where
special topologies are preferred from an expenditure point
of view [29]. Due to its flexible structure and competitive
structural properties, Scafida can be used as a single data

2This model of TP-Link requires a slight modification in the kernel driver
of the switch, more exactly the MAC learning function has to be disabled in
the corresponding source file (ag71xx_ar7240.c).
3More specifically, TIMEOUT_CHECK_PERIOD and LINK_TIMEOUT

parameters are set 1 and 4.5 sec, respectively.

center architecture in all the cases. Thus, Scafida allows
stakeholders to decide about the aggregate expenditure of the
data center instead of selecting a specific topology based on
assumed future market scenarios (e.g., the price of switches
vs. servers).
Cabling. Our experience with small enterprise and uni-

versity networks suggests that usually very little emphasis
is put on proper and clearly structured racking and cabling.
While ad-hoc solutions can certainly work on a small scale,
multiple thousands of data center nodes would certainly benefit
from order. In our case, this implies finding subgraphs in the
topology which can be stored in the same rack. This consti-
tutes important future work for us. From a cost viewpoint,
connecting the equipments of a Scafida DC would require
intense human workforce; however, as the absolute cost of
cabling is marginal compared to the aggregate cost of DC
architectures [29], Scafida deployment would not be hindered
by cabling costs.
Power consumption. Scafida data centers have the potential

to be energy efficient due to their scalable and flexible struc-
ture. As structures of any size can be realized using Scafida,
the resulting data center is energy proportional; i.e., the power
consumption is proportional to the number of servers. On the
contrary, the power consumption of state-of-the-art data center
architectures is not energy proportional [15, 17]. Current
energy price trends predict that energy proportionality will
be a crucial property regarding DC expenditures as the price
of power tends to increase. On top of this, a network-wide
power manager such as ElasticTree [18] can further be used
inside Scafida, switching off unnecessary servers and network
elements in the network without sacrificing throughput.
Commodity switches. Scafida is designed to create DCs

out of commodity switches using a flexible topology. Scafida
has a specialized routing method to exploit the benefits of
its topology; however, this does not increase the cost of its
deployment. The firmware of of-the-shelf network equipments
can be easily modified [28]; thus, a Scafida DC can be created
using cheap commodity switches. For example, the cost of
the devices of our prototype is extremely low: the TP-Link
switches cost $34 according to Amazon but also the price of
the 24-port HP switches is moderate ($3800).

VII. RELATED WORK

There is a sizable and highly practical body of work related
to data center networking. Several data center architectures
have been proposed recently; most of them are based on
symmetric structures. Data centers based on fat-tree topologies
[2, 12, 26] are built using commodity switches arranged in
three layers, namely core, medium, and server layers. The
structure is also known as Clos topology. The LEGUP proposal
tackles the problem of efficiently expanding existing data
centers, adding heterogeneity to Clos networks [8].
The symmetric structure of the BCube [13] data center

architecture is designed using a recursive algorithm. BCube
is intended to be used in container based, modular data cen-
ters, with a few thousand servers. The MDCube architecture
proposes a method to interconnect these containers to create
a mega-data center [34]. Similarly to BCube, DCell is also

9

built recursively [14]. DCell’s recursive expression scales up
rapidly, thus, DCell can have enormous number of servers with
small structural levels and switch ports.
Portland [26] is a scalable, fault tolerant layer-2 data center

fabric built on multi-rooted tree topologies (including fat tree
as well) that supports easy migration of virtual machines.
VL2 [12] is an agile data center fabric with properties like
performance isolation between services, load balancing, and
flat addressing.
Jellyfish [32], a recent DC architecture proposal suggests to

use random networks as underlying DC topology. Due to the
random structure, incremental expandability of this DC is solv-
able; however, the routing in Jellyfish DCs is identified as an
open research challenge. Despite the similarities, Scafida has
an advantage over Jellyfish owed to its structured randomness
inherited from scale-free networks: routing inside a Scafida
DC can be done throughout our proposed ESR method.
A recent study provides key insights from production data

centers [6]. Among others, it shows that data center traffic
is dominated by short and small flows, predominantly short
flow inter-arrival times require quick forwarding decision in
switches, and centralized fabric managers need to be imple-
mented in hardware to scale with growing network size.
Various studies dealt with the properties of scale-free (or

complex) networks in the recent decade, as a starting point
please refer to [4].

VIII. CONCLUSION
We presented the design, implementation, and multi-faceted

evaluation of the Scafida data center network architecture.
Scafida’s basic structure consists of servers and commodity
switches, connected into a topology inspired by scale-free
networks as introduced in [16]. In this paper we proposed
an organic expansion algorithm for Scafida resulting in a
freely scalable data center network structure with favorable
incremental properties (scalability and expandability) and per-
formance characteristics (short paths, high bisection bandwidth
and fault-tolerance). On top of its interconnection structure,
Scafida runs a fault-tolerant source routing protocol, ESR,
performing low-stretch, load-balanced, multi-path, multicast-
enabled routing, while requiring minimal computation in
switches. We have also implemented an OpenFlow-based
Scafida prototype, and validated its main features via Mininet-
emulations and live testbed measurements. We made the
source code of our prototype implementation, simulator, and
additional evaluation results available at [33]. We believe that
both small and large, continuously expanding data centers
could benefit from our findings.

REFERENCES
[1] Advanced Systems Group. Private vs. public cloud finan-

cial analysis. http://www.virtual.com/solutions/cloud-computing/
cloud-financial-analysis.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In SIGCOMM ’08, pages 63–74, 2008.

[3] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of
complex networks. Nature, 406(6794):378–82, August 2000.

[4] A. Barabási. Scale-free networks: a decade and beyond. Science,
325(5939):412, 2009.

[5] A.-L. Barabási and R. Albert. Emergence of Scaling in Random
Networks. Science, 286(5439):509–512, 1999.

[6] T. Benson, A. Akella, and D. Maltz. Network Traffic Characteristics of
Data Centers in the Wild. IMC ’10, pages 267–280, 2010.

[7] A. Broder and M. Mitzenmacher. Network applications of bloom filters:
A survey. Internet Mathematics, 1(4):485–509, 2004.

[8] A. R. Curtis, S. Keshav, and A. Lopez-Ortiz. Legup: using heterogeneity
to reduce the cost of data center network upgrades. In Co-NEXT ’10,
pages 14:1–14:12, New York, NY, USA, 2010. ACM.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. In OSDI’04, San Francisco, 2004.

[10] Defense Systems. Dod tackles information security in
the cloud. http://defensesystems.com/articles/2011/01/24/
defense-it-1-dod-cloud-computing-security-issues.aspx.

[11] Forrester Research. Market overview: Private cloud solutions, q2
2011. http://www.forrester.com/rb/Research/market_overview_private_
cloud_solutions%2C_q2_2011/q/ id/58924/ t/2.

[12] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. Vl2: a scalable and flexible data
center network. In SIGCOMM ’09, pages 51–62, 2009.

[13] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu. Bcube: a high performance, server-centric network architecture
for modular data centers. In SIGCOMM ’09, pages 63–74, 2009.

[14] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: a scalable
and fault-tolerant network structure for data centers. In SIGCOMM ’08,
pages 75–86, 2008.

[15] L. Gyarmati and A. Trinh. Energy efficiency of data centers. In Green IT:
Technologies and Applications, pages 229–244. Springer-Verlag, 2011.

[16] L. Gyarmati and T. A. Trinh. Scafida: a scale-free network inspired data
center architecture. SIGCOMM Comput. Commun. Rev., 40:4–12.

[17] L. Gyarmati and T. A. Trinh. How can architecture help to reduce
energy consumption in data center networking? In e-Energy ’10, pages
183–186, New York, NY, USA, 2010. ACM.

[18] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown. Elastictree: Saving energy in data center
networks. In NDSI ’10, 2010.

[19] IEEE 802.1AB. Station and media access control connectivity discovery.
[20] R. Katz. Tech titans building boom. Spectrum, IEEE, 46(2):40 –54,

2009.
[21] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: Rapid

prototyping for software-defined networks. In HotNets ’10, page 19.
ACM, 2010.

[22] A. Licis. HP, data center planning, design and optimization: a global
perspective. http://goo.gl/Sfydq, June 2008.

[23] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: enabling innovation
in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74,
2008.

[24] R. Miller. Facebook now has 30,000 servers. http://goo.gl/EGD2D, Nov.
2009.

[25] R. Miller. Facebook server count: 60,000 or more. http://goo.gl/79J4,
June 2010.

[26] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat. Portland: a scalable
fault-tolerant layer 2 data center network fabric. In SIGCOMM ’09,
pages 39–50, 2009.

[27] Open vSwitch. http://openvswitch.org/.
[28] OpenWrt. http://openwrt.org/.
[29] L. Popa, S. Ratnasamy, G. Iannaccone, A. Krishnamurthy, and I. Stoica.

A cost comparison of datacenter network architectures. Co-NEXT ’10,
pages 16:1–16:12, New York, NY, USA, 2010. ACM.

[30] C. Rothenberg, C. Macapuna, F. Verdi, M. Magalhães, and A. Zahem-
szky. Data center networking with in-packet Bloom filters. In SBRC,
Gramado, Brazil, 2010.

[31] M. Sarela, C. Rothenberg, T. Aura, A. Zahemszky, P. Nikander, and
J. Ott. Forwarding anomalies in bloom filter-based multicast. In
INFOCOM, 2011 Proceedings IEEE, april 2011.

[32] A. Singla, C. Hong, L. Popa, and P. Godfrey. Jellyfish: Networking data
centers, randomly. In USENIX HotCloud’11, 2011.

[33] Supporting materials. https://sites.google.com/site/
infocom2012freescalingdc/.

[34] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang. Mdcube: a high performance
network structure for modular data center interconnection. In CoNEXT
’09, pages 25–36, New York, NY, USA, 2009. ACM.

[35] G. Yan, T. Zhou, B. Hu, Z. Fu, and B. Wang. Efficient routing on
complex networks. Physical Review E, 73(4):46108, 2006.

