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Abstract

Consider the regression problem with a response variable Y and
with a feature vector X. For the regression function m(x) = E{Y |X =
x}, this paper investigates methods for estimating the density of the
residual Y − m(X) from i.i.d. data. We prove the strong universal
(density-free) L1-consistency of a recursive and a nonrecursive den-
sity estimate based on a regression estimate, and bound the rate of
convergence of the nonrecursive estimate.

1 Introduction

Let Y be a real valued random variable and let X = (X(1), . . . , X(d)) be a
d-dimensional random vector. The coordinates of X may have different types
of distributions, some of them may be discrete (for example binary), others
may be absolutely continuous. In the sequel we do not assume anything
about the distribution of X. The task of regression analysis is to estimate Y
given X, i.e., one aims to find a function F defined on the range of X such
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that F (X) is “close” to Y . Typically, closeness is measured in terms of the
mean squared error of F ,

E{(F (X)− Y )2}.

It is well-known that the mean squared error is minimized by the regression
function m with

m(x) = E{Y | X = x} (1)

and a minimum mean squared error is

L∗ := E{(Y −m(X))2} = min
F
E{(Y − F (X))2},

since, for each measurable function F , the mean squared error can be de-
composed into

E{(F (X)− Y )2} = E{(m(X)− Y )2}+ E{(m(X)− F (X))2}
= E{(m(X)− Y )2}+

∫

Rd

(m(x)− F (x))2µ(dx),

where µ denotes the distribution of X. The second term on the right hand
side is called excess error or integrated squared error of the function F .
Clearly, the mean squared error of F is close to its minimum if and only if
the excess error

∫
Rd(m(x)− F (x))2µ(dx) is close to zero.

The regression function cannot be calculated as long as the distribution
of (X, Y ) is unknown. Assume, however, that we observed data

Dn = {(X1, Y1), . . . , (Xn, Yn)} (2)

consisting of independent and identically distributed copies of (X, Y ). Dn

can be used to produce an estimate mn = mn(·, Dn) of the regression func-
tion m. Since m arises from L2 considerations, it is natural to study L2(µ)
convergence of the regression estimate mn to m. In particular, the estimator
mn is called strongly universally consistent if its excess error satisfies

∫

Rd

(m(x)−mn(x))2µ(dx) → 0 a.s.

for all distributions of (X, Y ) with E|Y |2 < ∞.
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It is of great importance to be able to estimate the various characteristics
of the residual

Y −m(X).

For nonparametric estimates of the minimum mean squared error

L∗ = E{(Y −m(X))2}
see, e.g., Dudoit and van der Laan [15], Kohler [22], Liitiäinen, Corona, and
Lendasse [23], [24], Liitiäinen, Verleysen, Corona and Lendasse [25], Müller
and Stadtmüller [27], Neumann [29], Pelckmans, De Brabanter, Suykens and
De Moor [31], Stadtmüller and Tsybakov [33] and the literature cited there.
Devroye, Györfi, Schäfer and Walk [12] proved that without any tail and
smoothness condition L∗ cannot be estimated with guaranteed rate of con-
vergence, and showed a first nearest neighbor based estimate, which for Lip-
schitz continuous m has faster rate of convergence than that of the usual
plug-in estimators. Müller, Schick and Wefelmeyer [28] estimate L∗ as the
variance of an independent measurement error Z in the model

Y = m(X) + Z (3)

such that E{Z} = 0, and X and Z are independent. Sometimes it is called
additive noise model.

2 A recursive estimate

In this paper we deal with the problem how to estimate the density f of the
residual

Y −m(X)

assuming that the density f exists. Our aim is to estimate f from i.i.d. data
(2).

Under some smoothness conditions on the density f , Ahmad [1], Cheng
[5], [4], Efromovich [16], [17], Akritas and Van Keilegom [2], Neumeyer and
Van Keilgom [30] studied the estimate the density of the residual. Under the
additive noise model (3), Devroye, Felber, Kohler and Krzyzak [8] introduced
a density estimate of the residual, and proved its universal (density free)
strong consistency in L1.

In this paper we extend this result such that don’t assume the additive
noise model (3). We only assume that, for given X = x, the conditional
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density of the residual Y −m(X) exists. This conditional density is denoted
by f(z | x). Then

f(z) =

∫

Rd

f(z | x)µ(dx).

Suppose that based on the data (X1, Y1), . . . , (Xn, Yn), we are given a
strongly universally consistent regression estimate mn. We introduce a re-
cursive density estimate of the residual, which is a slight modification of
the recursive kernel density estimate due to Wolverton and Wagner [38] and
Yamoto [36]. Let K be a density on R, called kernel, {hi} is the bandwidth
sequence. For a bandwidth h > 0, introduce the notation

Kh(z) =
1

h
K(z/h).

Then the recursive estimate is defined by

fn(z) :=
1

n

n∑
i=1

Khi
(z − Zi), (4)

where in the i-th term we plug-in the approximation of the i-th residual

Zi := Yi −mi−1(Xi).

Theorem 1 Assume that Y is square integrable. Suppose that we are given
a strongly universally consistent regression estimate mn, i.e.,

∫

Rd

(m(x)−mn(x))2µ(dx) → 0 a.s.

and for given X = x, the conditional density of the residual Y −m(X) exists.
Assume that the kernel function K is a square integrable density, and

lim
n→∞

hn = 0 and
∞∑

n=1

1

n2hn

< ∞. (5)

Then

lim
n→∞

∫

R
|fn(z)− f(z)|dz = 0

a.s.

4



Proof For given X = x and for given (X1, Y1), . . . , (Xn, Yn), the approxi-
mate residual

Y −mn(X) = Y −m(X) + m(X)−mn(X)

has the conditional density f(z +mn(x)−m(x) | x) and so the density gn(z)
of Y −mn(X) can be calculated as follows:

gn(z) =

∫

Rd

f(z + mn(x)−m(x) | x)µ(dx).

Next we show that

lim
n→∞

∫

R
|gn(z)− f(z)|dz = 0 (6)

a.s. For δ > 0, introduce the notation

∆x(δ) := sup
|u|≤δ

∫

R
|f(z + u | x)− f(z | x)|dz.

Thus,

∫

R
|gn(z)− f(z)|dz

=

∫

R
|
∫

Rd

f(z + mn(x)−m(x) | x)µ(dx)−
∫

Rd

f(z | x)µ(dx)|dz

≤
∫

Rd

(∫

R
|f(z + mn(x)−m(x) | x)− f(z | x)|dz

)
µ(dx)

=

∫

Rd

(∫

R
|f(z + mn(x)−m(x) | x)− f(z | x)|dz

)
I{|mn(x)−m(x)|≤δ}µ(dx)

+

∫

Rd

(∫

R
|f(z + mn(x)−m(x) | x)− f(z | x)|dz

)
I{|mn(x)−m(x)|>δ}µ(dx)

≤
∫

Rd

∆x(δ)µ(dx) + 2P{|m(X)−mn(X)| > δ | (X1, Y1), . . . , (Xn, Yn)}

=

∫

Rd

∆x(δ)µ(dx) + 2

∫
Rd(m(x)−mn(x))2µ(dx)

δ2

→
∫

Rd

∆x(δ)µ(dx)
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a.s. as n →∞. ∆x(δ) ≤ 2 and for any fixed x, ∆x(δ) → 0 as δ → 0, therefore
the dominated convergence theorem implies that

∫

Rd

∆x(δ)µ(dx) → 0

as δ → 0. Apply the decomposition

fn(z)− f(z) = Vn(z) + Bn(z),

where the variation term is

Vn(z) =
1

n

n∑
i=1

[Khi
(z − Zi)− E {Khi

(z − Zi) | (X1, Y1), . . . , (Xi−1, Yi−1)}] ,

while the (conditional) bias term is

Bn(z) =
1

n

n∑
i=1

E {Khi
(z − Zi) | (X1, Y1), . . . , (Xi−1, Yi−1)} − f(z).

Concerning the bias term, limn→∞ hn = 0 and (6) imply that

∫

R
|Bn(z)|dz =

∫

R

∣∣∣∣∣
1

n

n∑
i=1

∫

R
Khi

(z − u)gi−1(u)du− f(z)

∣∣∣∣∣ dz

≤
∫

R

∣∣∣∣∣
1

n

n∑
i=1

∫

R
Khi

(z − u)f(u)du− f(z)

∣∣∣∣∣ dz

+

∫

R

1

n

n∑
i=1

∫

R
Khi

(z − u)|gi−1(u)− f(u)|dudz

≤
∫

R

∣∣∣∣∣
1

n

n∑
i=1

∫

R
Khi

(z − u)f(u)du− f(z)

∣∣∣∣∣ dz

+
1

n

n∑
i=1

∫

R
|gi−1(u)− f(u)|du

→ 0

a.s., because of Toeplitz Lemma and Theorem 2.4 in Devroye, Györfi [10].
Vn(·) is an average of L2-valued sequence of martingale differences. We apply
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the generalized Chow theorem [6]: let Un, n = 1, 2, . . . be an L2-valued
sequence of martingale differences such that

∞∑
n=1

E{‖Un‖2
2}

n2
, < ∞

where ‖ · ‖2 denotes the L2 norm. Then

lim
n→∞

∥∥∥∥∥
1

n

n∑
i=1

Ui

∥∥∥∥∥
2

= 0

a.s. (cf. Györfi, Györfi, Vajda [19]). One has to verify the condition of the
generalized Chow theorem:

∞∑
n=1

E
{‖Khi

(· − Zi)− E {Khi
(· − Zi) | (X1, Y1), . . . , (Xn−1, Yn−1)}‖2

2

}

n2

≤
∞∑

n=1

E
{‖Khi

(· − Zi)‖2
2

}

n2

≤
∞∑

n=1

‖K‖2
2

n2hn

< ∞,

by the condition of the theorem, and so

‖Vn‖2 → 0

a.s. Put

f̂n(z) :=
1

n

n∑
i=1

E {Khi
(z − Zi) | (X1, Y1), . . . , (Xi−1, Yi−1)} .

then we proved that
‖f̂n − f‖1 = ‖Bn‖1 → 0

a.s., where ‖ · ‖1 denotes the L1 norm, and

‖f̂n − fn‖2 = ‖Vn‖2 → 0

a.s. From Lemma 3.1 in Györfi, Masry [20] we get that these two limit
relations imply

‖fn − f‖1 → 0

a.s.
¤
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3 A non-recursive estimate

Next we introduce a data splitting scheme. Assume that we are given two
independent samples:

Dn = {(X1, Y1), . . . , (Xn, Yn)}

and
D′

n = {(X ′
1, Y

′
1), . . . , (X

′
n, Y ′

n)}.
From sample Dn we generate a strongly universally consistent regression
estimate mn. Then the non-recursive estimate is defined by

fn(z) :=
1

n

n∑
i=1

Khn(z − Zi), (7)

where in the i-th term we plug-in the approximation of the i-th residual

Zi := Y ′
i −mn(X ′

i).

Given Dn, the common density of Zi’s is gn.
Under the additive noise model (3), Devroye, Felber, Kohler and Krzyzak

[8] proved its universal strong consistency in L1.

Theorem 2 Suppose that we are given a strongly universally consistent re-
gression estimate mn, i.e.,

∫

Rd

(m(x)−mn(x))2µ(dx) → 0 a.s.

and for given X = x, the conditional density of the residual Y −m(X) exists.
Assume that the kernel function K is a square integrable density, and

lim
n→∞

hn = 0 and lim
n→∞

nhn = ∞. (8)

Then

lim
n→∞

∫

R
|fn(z)− f(z)|dz = 0

a.s.
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Proof. Applying the argument is Devroye [7], we get that

P
{∣∣∣

∫

R
|fn − f | − E

{∫

R
|fn − f | | Dn

} ∣∣∣ ≥ ε | Dn

}
≤ 2e−nε2/2,

therefore one has to prove that

E
{∫

R
|fn − f | | Dn

}
→ 0

a.s. Concerning the conditional bias term, we have that

∫

R
|E{fn(z) | Dn} − f(z)|dz

=

∫

R

∣∣∣
∫

R
Khn(z − u)gn(u)du− f(z)

∣∣∣dz

≤
∫

R

∣∣∣
∫

R
Khn(z − u)f(u)du− f(z)

∣∣∣dz +

∫

R

∫

R
Khn(z − u)|gn(u)− f(u)|dudz

≤
∫

R

∣∣∣
∫

R
Khn(z − u)f(u)du− f(z)

∣∣∣dz +

∫

R
|gn(u)− f(u)|du

→ 0

a.s. For the conditional variation term, let I be an arbitrary interval, then
we have that

E
{∫

R
|E{fn(z) | Dn} − fn(z)|dz | Dn

}

≤
∫

I

E {|E{fn(z) | Dn} − fn(z)| | Dn} dz + 2

∫

Ic

E{fn(z) | Dn}dz

≤
∫

I

√
E {|E{fn(z) | Dn} − fn(z)|2 | Dn}dz

+2

∫

R
|E{fn(z) | Dn} − f(z)|dz + 2

∫

Ic

f(z)dz.

For ε > 0, choose I and n such that

2

∫

R
|E{fn(z) | Dn} − f(z)|dz + 2

∫

Ic

f(z)dz < ε.
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Thus,

E
{∫

R
|E{fn(z) | Dn} − fn(z)|dz | Dn

}

≤
∫

I

√
E {|E{Khn(z − Z1) | Dn} −Khn(z − Z1)|2 | Dn}

n
dz + ε

≤
∫

I

√
E {Khn(z − Z1)2 | Dn}

n
dz + ε

≤
√
‖K‖2

2|I|
nhn

+ ε

→ ε

a.s., where |I| denotes the length of the interval I. ¤

Remark 2. Using a tricky counter example, Devroye, Felber, Kohler and
Krzyzak [8] showed that the condition of the existence of conditional densities
of the residual cannot be weakened, if for the regression estimate merely
strong universal consistency is assumed. The example is follows: Choose X
uniformly distributed on [0, 1], let U be independent of X take on values 1
and −1 with probability 1/2, resp., and set Y = U ·X. Then Y is uniformly
distributed on [−1, 1] and has a density, the regression function is 0. However,
Y = Y − m(X) is conditioned on the value of X = x concentrated on −x
and x and has no density. Then they constructed an approximation mn of
the regression function such that maxx |mn(x)| ≤ √

hn → 0 and

lim inf
n

∫

R
|fn(z)− f(z)|dz ≥ 1

a.s., where the kernel K is the window kernel.

Remark 3. Instead of considering the density of the residual Y −m(X), one
may want to estimate the density of m(X) from data. Luc Devroye noticed
that in this scheme it is not enough to have universally consistent regression
estimate, as the following example shows. Put

mn(Xi) := jhn if m(Xi) ∈ [(j − 1/2)hn, (j + 1/2)hn),

then
|m(Xi)−mn(Xi)| ≤ hn/2 → 0.
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Introduce the kernel density estimate

fn(z) :=
1

n

n∑
i=1

Khn(z −mn(Xi))

and assume that the support of the kernel K is contained in [−1/4, 1/4).
Then the support of fn is contained in

An := ∪∞j=∞[(j − 1/4)hn, (j + 1/4)hn),

therefore∫

R
|fn(z)− f(z)|dz ≥

∫

Ac
n

|fn(z)− f(z)|dz =

∫

Ac
n

f(z)dz ≈ 1/2

if hn is small enough.

4 The rate of convergence of the nonrecursive

estimate

An important problem is to bound the rate of convergence of

E
{∫

R
|fn(z)− f(z)|dz

}
,

where fn is the nonrecursive estimate. The main question is the size of
degradation with respect to the case when Yi−m(Xi) is available, i.e., what
is the influence of the regression estimate in the rate of convergence of the
density estimate.

Theorem 3 Under the model of additive noise (3), assume that the density
f is twice differentiable and has a compact support contained in the interval
I. Moreover, suppose that the kernel K is symmetric (K(x) = K(−x)),
bounded and has compact support. Then

E
{∫

R
|fn(z)− f(z)|dz

}
≤ c1h

2
n +

c2√
nhn

+c3E
{∣∣∣

∫

Rd

mn(x)µ(dx)− E{Y }
∣∣∣
}

+c4E
{∫

Rd

(mn(x)−m(x))2µ(dx)

}
.
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Proof. The proof of Theorem 2 implies that

E
{∫

R
|fn(z)− f(z)|dz

}

≤ E
{∫

R
|E{fn(z) | Dn} − f(z)|dz

}
+ E

{∫

R
|E{fn(z) | Dn} − fn(z)|dz

}

≤
∫

R

∣∣∣
∫

R
Khn(z − u)f(u)du− f(z)

∣∣∣dz + E
{∫

R
|gn(z)− f(z)|dz

}

+
‖K‖2

√
|I|√

nhn

≤ c1h
2
n +

c2√
nhn

+ E
{∫

R
|gn(u)− f(u)|du

}
,

where we applied Lemma 5.4 in Devroye, Györfi [10]. The sum of the first
and the second term in the right hand side is the same as that of the rate
of convergence of the standard kernel estimate (cf. Theorem 5.1 in Devroye,
Györfi [10]), so the excess error can be bounded by E

{∫
R |gn(z)− f(z)|dz

}
.

In the special case (3) of additive noise we have that

f(z | x) = f(z).

For twice differentiable density f , let’s calculate the second order Taylor
expansion of f(z + mn(x)−m(x)) at z:

f(z+mn(x)−m(x)) = f(z)+f ′(z)(mn(x)−m(x))+
f ′′(zn,x)

2
(mn(x)−m(x))2

with some zn,x. Then∫

R
|gn(z)− f(z)|dz

=

∫

R

∣∣∣
∫

Rd

f(z + mn(x)−m(x))µ(dx)− f(z)
∣∣∣dz

=

∫

R

∣∣∣
∫

Rd

(f ′(z)(mn(x)−m(x)) +
f ′′(zn,x)

2
(mn(x)−m(x))2)µ(dx)

∣∣∣dz

≤ |I|max
z
|f ′(z)|

∣∣∣
∫

Rd

(mn(x)−m(x))µ(dx)
∣∣∣

+|I|max
z
|f ′′(z)|

∫

Rd

(mn(x)−m(x))2µ(dx)

= c3

∣∣∣
∫

Rd

mn(x)µ(dx)− E{m(X)}
∣∣∣ + c4

∫

Rd

(mn(x)−m(x))2µ(dx).
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Remark 4. If hn = c5n
−1/5 then

c1h
2
n +

c2√
nhn

= c6n
−2/5.

If the regression function m is Lipschitz continuous and X is bounded then
the partitioning, the kernel and the nearest neighbor regression estimates
have rate of convergence

E
{∫

Rd

(mn(x)−m(x))2µ(dx)

}
≤ c7n

−2/(d+2), (9)

(cf. Chapters 4, 5, 6 in Györfi et al [21]). Next we show that under some
situations,

E
{∣∣∣

∫

Rd

mn(x)µ(dx)− E{m(X)}
∣∣∣
}
≤ c8n

−2/(d+2), (10)

which would imply that

E
{∫

R
|fn(z)− f(z)|dz

}
≤ c6n

−2/5 + c7n
−2/(d+2),

and so for d ≤ 3 the rate of convergence is the same as that of standard
kernel estimate.

Stone [34] first pointed out that there exist universally consistent estima-
tors. He considered local averaging estimates, i.e., estimates of the form

mn(x) =
n∑

i=1

Wni(x; X1, . . . , Xn)Yi =
n∑

i=1

Wni(x)Yi,

where Wni(x) are the data-dependent weights governing the local averaging
about x.

The partitioning estimate is defined by a partition Pn = {An,1, An,2 . . .}
of Rd and

mn(x) =

∑n
i=1 YiI{Xi∈An(x)}∑n
i=1 I{Xi∈An(x)}

,

where An(x) denotes the cell An,j into which x falls, and 0/0 = 0, by defini-
tion. Results on universal consistency can be found in Devroye and Györfi
[9] and Györfi [18].
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Corollary 1 For the non-recursive estimate fn, choose hn = c5n
−1/5. Let

the regression estimate mn be the partitioning estimate. In addition to the
conditions of Theorem 3, assume that the partition is cubic with side length

h′n = c13n
−1/(d+2),

Y and X are bounded, and m satisfies the Lipschitz condition:

|m(x)−m(z) ≤ C‖x− z‖. (11)

Then

E
{∫

R
|fn(z)− f(z)|dz

}
≤ c6n

−2/5 + c7n
−2/(d+2).

Proof. Theorem 4.3 in Györfi et al [21] implies (9), so because of Theorem
3 and Remark 4, we have to show (10). From the definition of the estimate
we get that

∫

Rd

mn(x)µ(dx) =

∫

Rd

∑n
i=1 YiI{Xi∈An(x)}∑n
i=1 I{Xi∈An(x)}

µ(dx)

=
∑

A∈Pn

∫

Rd

∑n
i=1 YiI{Xi∈A}∑n
i=1 I{Xi∈A}

µ(dx)

=
∑

A∈Pn

∑n
i=1 YiI{Xi∈A}∑n
i=1 I{Xi∈A}

µ(A)

=
1

n

n∑
i=1

Yi
µ(An(Xi))

µn(An(Xi))
,

therefore

∫

Rd

mn(x)µ(dx) =
1

n

n∑
i=1

(Yi −m(Xi))
µ(An(Xi))

µn(An(Xi))
+

1

n

n∑
i=1

m(Xi)
µ(An(Xi))

µn(An(Xi))
,

and so

E
{∣∣∣

∫

Rd

mn(x)µ(dx)− E{m(X)}
∣∣∣
}

≤ E

{∣∣∣ 1
n

n∑
i=1

(Yi −m(Xi))
µ(An(Xi))

µn(An(Xi))

∣∣∣
}
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+E

{∣∣∣ 1
n

n∑
i=1

(
µ(An(Xi))

µn(An(Xi))
− 1

)
(m(Xi) + L)

∣∣∣
}

+E

{∣∣∣ 1
n

n∑
i=1

m(Xi)− E{m(X)}
∣∣∣
}

.

The first term of the right hand side is easy to manage, since

E

{∣∣∣ 1
n

n∑
i=1

(Yi −m(Xi))
µ(An(Xi))

µn(An(Xi))

∣∣∣
}

≤
√√√√E

{∣∣∣ 1
n

n∑
i=1

(Yi −m(Xi))
µ(An(Xi))

µn(An(Xi))

∣∣∣
2
}

≤ 2L√
n

√
E

{
µ(An(X1))2

µn(An(X1))2

}

=
2L√

n

√√√√ ∑
A∈Pn

P{X1 ∈ A}E
{

µ(A)2

(
1
n
(
∑n

i=2 I{Xi∈A} + 1)
)2

}

≤ 2L√
n

√
2

∑
A∈Pn

µ(A)

=
23/2L√

n
,

where L denotes the bound of |Y |. For the third term of the right hand side,
we get that

E

{∣∣∣ 1
n

n∑
i=1

m(Xi)− E{m(X)}
∣∣∣
}

≤
√√√√E

{∣∣∣ 1
n

n∑
i=1

m(Xi)− E{m(X)}
∣∣∣
2
}

=

√
Var(m(X))

n

≤ L√
n

.

Concerning the second term of the right hand side, introduce the notations

νn(A) =
1

n

n∑
i=1

(m(Xi) + L)I{Xi∈A}
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and

ν(A) =

∫

A

(m(x) + L)µ(dx).

Then

1

n

n∑
i=1

(
µ(An(Xi))

µn(An(Xi))
− 1

)
(m(Xi) + L)

=
1

n

n∑
i=1

∑
A∈Pn

I{Xi∈A}

(
µ(A)

µn(A)
− 1

)
(m(Xi) + L)

=
∑

A∈Pn

(
µ(A)

µn(A)
− 1

)
1

n

n∑
i=1

I{Xi∈A}(m(Xi) + L)

=
∑

A∈Pn

νn(A)

µn(A)
(µ(A)− µn(A))I{µn(A)>0},

therefore

E

{∣∣∣ 1
n

n∑
i=1

(
µ(An(Xi))

µn(An(Xi))
− 1

)
(m(Xi) + L)

∣∣∣
}

≤ E

{∣∣∣
∑

A∈Pn

(
νn(A)

µn(A)
− ν(A)

µ(A)

)
(µ(A)− µn(A))I{µn(A)>0}

∣∣∣
}

+E

{∣∣∣
∑

A∈Pn

ν(A)

µ(A)
(µ(A)− µn(A))

∣∣∣
}

+E

{∣∣∣
∑

A∈Pn

ν(A)I{µn(A)=0}
∣∣∣
}

.

Without loss of generality assume that µ(An,j) > 0 for j ≤ Mn, and µ(An,j) =
0 otherwise. Then Mn ≤ c20/h

′d
n . The Lipschitz condition implies that

∣∣∣∣
νn(A)

µn(A)
− ν(A)

µ(A)

∣∣∣∣ I{µn(A)>0} ≤ C
√

dh′n,

therefore

E

{∣∣∣
∑

A∈Pn

(
νn(A)

µn(A)
− ν(A)

µ(A)

)
(µ(A)− µn(A))I{µn(A)>0}

∣∣∣
}

16



≤ C
√

dh′n
∑

A∈Pn

E
{∣∣∣µ(A)− µn(A)

∣∣∣
}

≤ C
√

dh′n

√
Mn

n

≤ c21n
−2/(d+2).

Moreover,

E

{∣∣∣
∑

A∈Pn

ν(A)I{µn(A)=0}
∣∣∣
}
≤ L

∑
A∈Pn

µ(A)(1−(1−µ(A))n) ≤ LMn

n
≤ c22n

−2/(d+2),

and

E

{∣∣∣
∑

A∈Pn

ν(A)

µ(A)
(µ(A)− µn(A))

∣∣∣
}

≤
√√√√E

{∣∣∣
∑

A∈Pn

ν(A)

µ(A)
(µ(A)− µn(A))

∣∣∣
2
}

≤
√√√√ ∑

A∈Pn

ν(A)2

µ(A)2
E {(µ(A)− µn(A))2}+

∑

A6=B∈Pn

Cov

(
ν(A)

µ(A)
µn(A),

ν(B)

µ(B)
µn(B)

)

≤
√ ∑

A∈Pn

ν(A)2

µ(A)2

µ(A)

n

≤ L√
n

,

where we applied that ν(A) ≥ 0 and ν(B) ≥ 0 and

Cov

(
ν(A)

µ(A)
µn(A),

ν(B)

µ(B)
µn(B)

)
=

ν(A)

µ(A)

ν(B)

µ(B)
Cov (µn(A), µn(B)) ≤ 0,

(cf. Mallows [26], Berlinet, Györfi, van der Meulen [3]). Summarizing these
inequalities, the proof of the corollary is complete. ¤
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Akadémiai Kiadó, Budapest, 1983.

[10] Devroye, L. and Györfi, L. Nonparametric Density Estimation: The L1

View. John Wiley, New York, 1985.

[11] Devroye, L., Györfi, L., Krzyżak, A. and Lugosi, G. On the strong
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[12] Devroye, L., Schäfer, D., Györfi, L. and Walk, H. The estimation prob-
lem of minimum mean squared error. Statistics and Decisions, 21, pp.
15-28, 2003.
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