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1. INTRODUCTION 

Telecommunications research and development is motivated by the continuous evolution of service 

needs and requirements. New technologies are emerging, new principles are evolving, and the 

networks are facing new and new challenges. Beyond the primary challenge of increasing bandwidth 

needs, future (internet) services have several additional requirements, e.g. for latency or reliability of 

the communication network. 

Evolution of core and access networks is strongly connected: core networks have to serve the traffic 

arriving from access networks, or in contrary: even if enormous bandwidth is available in the core 

network, customers without the necessary high speed access do not benefit from it. After the glorious 

last decade of optical transmission in core networks, time has come for fiber communications in the 

access networks. The technical and economic challenges were preventing the exploitation of optical 

transmission in the access network until the recent years. Optical network technologies based on 

simple, cheap equipment, such as passive optical networks were the fundamental enablers of the 

development. The term “Next Generation Access” (NGA) network refers to the fully or partly optical 

access networks, fulfilling the above mentioned requirements of future (internet) services.  

1.1. NEXT GENERATION ACCESS NETWORKS (NGA) 

Access networks of the (near) future have to face a set of service requirements that enforces 

substantial changes in the network technology: complete or partial replacement of the copper 

networks with optical fiber. In the short term, 100 Mbit/s bandwidth requirements have to be fulfilled 

on a per customer basis, and for the 2020 time horizon, the European goal is to keep up with capacity 

growth of at least 1 Gb/s in the wireless, and 10 Gb/s in the wired access. Offered new services, e.g. 

HD VoD (High Definition Video on Demand), VoIP (Voice over IP), videoconferencing and high speed 

internet access require high bandwidth and low delay simultaneously [1]-[2]. 

The depth of fiber installation in the network makes distinction between Fiber to the Home (FTTH) or 

Fiber to the Building (FTTB) architectures, i.e. the complete replacement of the copper network with 

optical fiber (with or without respect to the in-building cabling); and Fiber to the Cabinet (FTTC) or 

Fiber to the Neighborhood (FTTN) architectures, i.e. partial replacement of the copper network with 

optical fiber [3]. Considering the access network structure, a differentiation can be made between 

point-to-point and point-multipoint systems. In the latter case, several aggregation/distribution nodes 

exist in the cable plant, and the demand points are connected to the Central Office (CO) or Point of 

Presence (PoP) through these. In the case of point-to-point networks, the demand points are 

connected directly to their respective Central Office via a dedicated optical fiber. Point-to-point is also 

referred to as home run, while point-to-point as star architecture in several publications. 

Even though numerous competing NGA network technologies exist, a classification can be made 

based on their architecture principles: 

PASSIVE OPTICAL NETWORKS (PON) 

Passive optical networks rely completely on optical connectivity. They have a point-to-multipoint 

architecture with passive devices as aggregation/distribution nodes within the cable plant. Currently 

existing PON technologies are e.g. APON [9], BPON [10], EPON [11]  or GPON [12] and their 10G 

counterparts, 10G EPON [13] and XGPON [14], while WDM PON systems are just showing up [4]-[7]. 
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ACTIVE OPTICAL NETWORKS (AON) 

Active optical networks are similar to their passive counterparts, with the significant difference of 

using active aggregation/distribution equipment in the cable plant. Active Ethernet networks are a 

significant current example of the AON architecture [15]. 

DIGITAL SUBSCRIBER LINE NETWORKS (DSL) 

The complete replacement of copper network by optical fiber clearly has some technical advantages. 

However, the huge investment needs may be prohibitive. The partial replacement, leading to Fiber to 

the Cabinet (FTTC) or Fiber to the Neighborhood (FTTN) architectures provide a reasonable tradeoff 

between investment and service level improvement simply by reusing the existing copper connectivity 

on the very last segment of the access networks. All of the xDSL (e.g. ADSL [18], ADSL2 [19], ADSL2+ 

[20], VDSL [21], VDSL2 [22]…) technologies represent the family of DSL networks: these have very 

similar network architecture, at least on a higher abstraction level [23]. 

POINT-TO-POINT FIBER NETWORKS (P2P) 

In contrary to the point-multipoint PON/AON network architectures, in the case of P2P networks, the 

demand points are connected directly to their respective Central Office (i.e. Point of Presence) via a 

dedicated optical fiber [16]-[17]. 

      FTTH/FTTB:
Fully optical access

Point-multipoint networks

Active optical 
networks 

(AON)
Active Ethernet, ...

Point-to-point 
networks (P2P)

Dedicated fiber Ethernet, ...

Digital 
Subscriber Line 
networks (DSL)

ADSL,ADSL2 (+), VDSL, ...

Passive optical 
networks 

(PON)
ABON, BPON, EPON, GPON, ...

 

FIGURE 1 NGA TECHNOLOGY CLASSIFICATION 

1.2. NETWORK PLANNING 

Optical networks provide a future proof platform for a wide range of services at the expense of 

replacing the cable plant. Unfortunately this “expense” is an enormous investment, which has to be 

justified by long term sustainability. Deployment costs have to be minimized, therefore optimal 

network planning plays crucial role regarding profitability. During optimal access network topology 

design, various aspects have to be considered simultaneously. Reducing cost of the network 

deployment (CAPEX – CAPital EXpenditure) is a natural requirement, and also the future OPEX 

(OPerational EXpenses) have to be considered, even though the latter is more difficult to see in 

advance. Coupling these with the administrative requirements of the operator and physical limitations 

of the technology leads to a really complex optimization problem.  
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The current practice for access network planning could be described as a “design guesswork” of 

highly experienced engineers, which is probably not an optimal use of the highly valuable human 

creativity: the complete network planning process is very time consuming. Therefore the work 

described in my study is devoted to an algorithmic approach of this problem, which on the one hand 

could speed up the process, and on the other hand, the mathematic interpretation allows evaluation 

of the network topology regarding optimality. 

The methods developed and presented in this study are devoted to strategic topology design in an 

algorithmic way. The term “strategic topology design” stands for a high-level design, including location 

of the network elements, layout of the optical cable plant and a complete system design, but lacks the 

details of a low-level design. 

We have to shortly mention here that digital maps and GIS databases (Geographic Information 

System) are an “enabling technology” for the algorithmic, computer aided network design, solving the 

most important practical difficulty. Digital maps became available in the recent years for typically any 

considerable access network service area, and as we will see, this geographic information serves as the 

primary input data of the optimization problem. 

Novelty of the results presented in this study lies in the fact that we are solving a problem 

algorithmically by computers, which was earlier done by a human guesswork, and no scalable 

algorithmic solution was known that was capable to handle problem sizes of practical interest. 

1.2.1. TECHNO-ECONOMIC EVALUATION 

As an important additional application, such a strategic topology design provides input for detailed 

preliminary cost estimation, and offers thorough techno-economic evaluation and comparison of the 

NGA technologies in focus. Techno-economic evaluation addresses the relationship between technical 

decisions and their economic impact. Deploying a NGA networks clearly brings technical advantages 

over the legacy copper network, however an investment decision must be justified by economic 

considerations too. 

The first and foremost step of any economic evaluation is the estimation of the network deployment 

cost. The existence of an algorithmic network design methodology leads to a significant improvement 

in this field: knowing the optimized topology itself, helps to calculate the necessary expenses. 

Therefore availability of a topology design methodology for all viable NGA technologies supports the 

optimal choice among suitable network architectures. 

The novelty of our approach is the combination of network design with the techno-economic 

approach. The “state of the art” techno-economic methodologies are using simplified geometric 

models for cost estimation, instead of the optimized network topology itself. As our recent results 

have shown, the concept of integrating network design into techno-economic evaluation is a 

significantly more accurate and reliable methodology [50]-[51].  

1.3. RELATED WORK 

Theory of network design in itself has a long history and a massive research background [24]. The 

above described high economic and technical impact brought wide audience to this field, thus network 

design for optical access networks also triggered various efforts. However, algorithmic network design 

for access networks was not possible in the absence of digital maps and GIS databases for a long time, 

and the computational capacity also set tight restrictions. Due to the recent advances in this field, 

algorithmic network design became a viable opportunity. Therefore, research efforts started from 
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various directions. At the time of writing this study there were some initial results and efforts in the 

literature, however all of them were constrained by the contradictory requirements of scalability and 

the need to avoid oversimplification. 

S. U. Khan from the University of Texas (US) performed pioneer work in the field of algorithmic 

network design for PON networks [26] in 2005, even if his work was focusing on a Manhattan grid 

topology, which is a simplified approach to network design in general [27]. B. Lakic and M. Hajduczenia 

from Nokia-Siemens Networks Portugal have investigated the possibility to apply k-means clustering 

for demand points in the Euclidean space (neglecting the street system geometry), and then genetic 

algorithm for path generation [28]. This notable combination of clustering and genetic algorithm for 

PON network planning is then compared to hand-made network plans. Despite the promising results, 

not considering the street system at all is an example of serious oversimplification: the access network 

must typically follow the cable paths along streets, not crossing e.g. private buildings and properties, 

or rivers for example. 

E. Bonsma et al. from British Telecom have investigated an Evolutionary Algorithm approach, which 

has scalability problems, restricting its use to small schematic sample networks of a hundred demand 

points [29]. Another approach for use of genetic algorithm was published in [30] by A. Kokangul and A. 

Ari from Turkish Telecommunication Company, that has similar scalability issues: it presents a case 

study with 28 demand points in a PON network. In [31] we find another genetic algorithm solution, 

with similar limitations on scalability: its capabilities are demonstrated in a sample network with 122 

nodes. In [32] A. Haidine, R. Zhao et al. from Dresden University published  another metaheuristic 

technique, namely particle swarm optimization for the demand point clustering (partitioning) problem 

of a VDSL access network with feeder fiber. 

The exact optimization, such as the highly complex Mixed Integer Programming (MIP) approach was 

demonstrated in [33] by S. Chamberland from École Polytechnique de Montréal, which promises high 

quality results, but suffers from serious scalability problems: the large number of defined constraints 

and the dimensions of the resulting MIP matrix limits its usable range for hundreds of demand points. 

Later, concurrently with our research, similar research activities have started at University of 

Melbourne. Initially J. Li and G. Shen published in [34] a two-level random restart iterative heuristic 

algorithm considering geographic constraints in 2008. The published results were promising, therefore 

we have implemented their RALA (Recursive Allocation and Location algorithm) for comparison, and 

we have found that it gives almost the same results as our methods (within 1-2%); however its time 

consumption is 2-3 orders of magnitude higher due to the numerous iteration steps. Later on, in [35] 

they presented another recursive method for “greenfield” network planning, independent from 

existing infrastructure, street system or geographic constraints at all: in their terminology “greenfield” 

stands for an infrastructureless case, minimizing connection lengths in the Euclidean space. 

Clustering methods, and in particular the k-means algorithm was applied in different other 

publications for creating the demand point groups in point-multipoint networks. A. Agata and Y. 

Horiuchi from KDDI R&D Labs (Japan) have published a method using Voronoi-diagrams for splitting 

the service area, and then k-means for clustering, which is a highly effective solution, even if it does 

not solve the “bin packing” type problem of PON splitters with relatively low splitting capacity [36]: k-

means was originally not designed for clustering problems with fixed size clusters. 

NGA network planning has impressive literature addressing other aspects, e.g. marketing and 

economic considerations, or predicting future cost and demand parameters, however these do not 
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belong closely to the scope of this study, therefore I do not present them in details. An overall view on 

business and economic aspects is given in [39] by FTTH Council Europe. 

Techno-economic evaluation of access networks addresses the tradeoff between technical 

superiority and economic viability. Typically a higher investment results in higher service quality, 

however the relationship is far from linear. A thorough investigation of options, considering costs, 

service requirements and viable technologies is necessary to find the most suitable solution for the 

given service area. This interdisciplinary research area between telecommunication technology and 

economy is referred to as techno-economics. A An overall description of a techno-economic evaluation 

framework is given in [40] by the members of an EU research collaboration, including AGH (Kraków), 

KTH (Stockholm), IBBT (Gent) and BME (Budapest). A nice techno-economic overview of European 

telecommunication investment options is outlined in [41] by B. T. Olsen (Telenor) et al. 

Every techno-economic methodology focuses on the primary question of the initial investment. Two 

fundamental approaches exist for estimating the cost of network deployment:  in cases where 

sufficient statistical data exists, the typical cost per customer multiplied by the amount of customer 

premises gives an acceptable estimation, as the work of J. L. Riding, J. C. Ellershaw et al. [45] shows. 

Otherwise, the network topology has to be modeled, and the approximate values for fiber lengths and 

network equipment have to be summarized. Since statistical data obviously does not exist for new 

network technologies, the network topology modeling becomes the only viable solution in this case. 

The generally used geometric models are attractive due to their simplicity: using some aggreagate 

descriptors of the service area (e.g. diameter, population or density), a regular triangle or square 

network model is built, and with basic trigonometric and geometric formula, dimensions of the 

resulting cable plant and network equipment list is derived. A sequence of EU research projects was 

developing such geometric models, e.g. TITAN, OPTIMUM, TERA or TONIC [46], and we also find recent 

results in this field in [47] - [48]. 

As our recent results and publications have proven, this very attractive simplicity of geometric 

models reduces reliability and accuracy of the estimations (initial results in [49], short comparison in 

[50], in-depth comparison in [51]). It shows a really important field for algorithmic network design: if 

we have the ability to create the specific network topology for the chosen service area instead of a 

geometric model, it will definitely lead to higher accuracy for network deployment cost estimation. 

1.4. RESEARCH OBJECTIVES 

The problem in focus is motivated by the practical problem of network planning: a fiber access 

network topology is typically designed by hand, that takes a long time for highly qualified professionals 

of network operators. A computer-aided automatic planning process could speed up the process, and 

also a well-defined mathematical approach serves as a valuable evaluation and benchmark to the 

result of the planning process. 

The initial research objective is to achieve a deep understanding of the problem, and to clarify its 

theoretic background. A fundamental principle of the mathematic interpretation is to avoid 

oversimplification that hides important practical aspects of the problem. Therefore accurate and 

realistic network and cost models are necessary, that allow technology agnostic, general theoretic 

discussion at the same time. Difficulty of the formal modeling lies in the conflicting requirements of 

general, theoretic approach and practical applications of the proposed methodology. 
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The model should be able to handle different current and future NGA architectures and 

technologies, at the necessary abstraction level for theoretic research. Therefore a general 

formulation and model for the NGA Topology Design (NTD) problem will be given, followed by the 

definition of its special cases for Passive Optical Networks (PON), Active Optical Networks (AON), 

Digital Subscriber Line (DSL) and Point-to-Point (P2P) networks, according to the above presented NGA 

technology classification. Based on the model and the formal representation, the mathematical 

problem should be analyzed, from the point of view of complexity and approximability [52].  

Modeling, formulation and analysis supports the efforts towards an optimization methodology, 

which is as-fast-as-possible and as-good-as-possible at the same time. Normally methods with 

polynomial time complexity are accepted as fast algorithms. However, a large family of optimization 

problems, as the addressed NGA Topology Design (NTD) problem belongs to NP-hard problems, 

therefore “as-good-as-possible” in this case refers to an approximation instead of exact optimization. 

A fundamental requirement is to develop methods that are scalable enough for real-world scenarios, 

i.e. large-scale topology design problems, with up to thousands or even tens of thousands of demand 

points. These large-scale problems have to be solved within reasonable time, even though reasonable 

time for the offline problem of topology design practically means it has to be solved, regardless of 

time. However, as we will see later, it is still a hard challenge, due to complexity reasons. 

Finally, for evaluation purposes, and in order to provide a benchmark for the proposed methods 

and algorithms (and any future proposals), reference methods are necessary. These will be built on 

generally accepted, renowned concepts of optimization, e.g. quadratic/linear programming or widely 

known metaheuristic approaches. 

In summary, goals of the research presented in this study are the following: 

 modeling and formulation 

 analysis of the problem to be solved 

 proposing solutions, solving the optimization problem 

 evaluation of the proposed solutions 

1.5. RESEARCH METHODOLOGY 

Since the work described in this study is focusing on algorithmic topology design for NGA networks, 

including the theoretic background, proposed solutions and their evaluation, the initial step will be the 

introduction of a formal graph model and the optimization problem formulation, including its 

constraints, objectives, parameters and special cases. 

Once the problem is formulated, a complexity and approximability analysis will be carried out, 

providing in-depth knowledge on the most significant components and underlying subproblems of the 

NGA topology design problem. Tools of graph theory and algorithm theory will be applied in the 

sections devoted to these issues, and linear reductions  will be constructed for complexity and 

approximability analysis of the problems. The algorithmic analysis should provide reasonable 

requirements regarding scalability and accuracy of the heuristics. 

The proposed methodology is using highly specialized heuristic algorithms, since the general 

optimization techniques did not meet the requirements for scalability and accuracy. Decomposition 

helps to separate the subproblems and handle the strong cross-dependence among them. 
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For evaluation purposes, two well-known optimization techniques will be used. For exact 

optimization, a quadratic programming formulation is given, which will be linearized, and with a 

notable transformation of the problem, dimensions of the resulting linear programming 

formulation were significantly reduced, in order to find lower bounds for numerical evaluation. Finally, 

a simulated annealing scheme will be presented, that will be used as a benchmark for the highly 

specialized, highly efficient heuristics. 
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2. THE TOPOLOGY DESIGN PROBLEM 

The introductory section outlines the topic and the wider area, which is addressed by the research 

described in the study. This section is devoted to the formal and detailed description of the addressed, 

investigated and later solved problem, the NGA Topology Design (NTD) problem, as it will be called 

throughout the study. 

The work described in the study is focusing clarifying the theoretic background of algorithmic 

topology design (optimization) for NGA networks, and then, based on the theoretic work, a 

methodology will be proposed for it that fulfills the necessary requirements for scalability and 

accuracy. In order to carry out mathematical analysis, the problem has to be formulated first. A well-

defined model and formal representation is a prerequisite of the comprehensive complexity and 

approximability analysis, and also supports identification of subproblems and key points. 

Therefore in the first subsection the formal model is described, that has to be as realistic as possible, 

representing all decisive characteristics of the NTD problem. The problem will be then formulated as a 

standard optimization problem, defined by the solution space, the model (variables), the objective and 

the constraints in the second subsection. Finally the most important special cases are defined, based 

on the classification of various present and future NGA technologies. 

2.1.  PARAMETERIZED GRAPH MODEL 

Network designers are facing really diverse problems for various NGA technologies; however by 

finding the proper level of abstraction these problems can be represented by the same formal model. 

The applied network graph model is intended to represent all the significant information for the 

topology design process: the geographic and infrastructural data of the area where the network will be 

deployed, the technology specific constraints and the cost parameters. These are explained in the 

following paragraphs. 

Typically an access network topology consists of a Central Office (CO), a set of Subscriber Units (SU), 

and a cable plant connecting the demand points (households/subscribers) to the central office. In a 

point-multipoint structure, these demand points are organized into groups, and demand points within 

a single group share a Distribution Unit (DU), which aggregates their traffic towards the CO. The 

network segment interconnecting the DUs and the CO are referred to as feeder network segment, 

while the distribution network connects the demand points (households) to the DUs. Schematic view 

of such a point-multipoint access network is depicted on Figure 2. 

The service area itself, where the network is to be installed, may have many attributes that are 

important for various stages of the network deployment process. Focusing on the topology design 

itself, traces or paths along which network connections may be realized represent the most important 

information. Typically network links cannot be built wherever desired, they must follow existing cable 

paths, the street system or other infrastructure: the cable deployment and civil works (trenching, 

digging) is allowed in publicly owned land or on the existing infrastructure. The set of these so-called 

“available network links” (where cables may be deployed) serves as the edges of the graph model. 

Several important nodes are to be identified in the graph, with respect to their role, e.g. demand 

points, location of the central office, or the set of locations where the distribution units of a point-

multipoint network may be installed (e.g. cabinets with power supply, manholes, etc). The latter set 

will be referred to as “available DU locations”. 



| The topology design problem 17 

 

CO

Feeder 

Network

Distribution 

Network

Central 

Office (CO)

Subscriber 

Unit (SU)

Distribution 

Unit (DU)

Feeder 

network link

Distribution 

network link

Subscriber 

group #i

{i}

{i+1}

{i}

DU

SU

 

FIGURE 2 POINT-MULTIPOINT ACCESS NETWORK ARCHITECTURE 

Therefore, an NGA topology design (NTD) problem is defined by the following data: 

 map of the service area, traces and paths, i.e. the  available network links 

 demand point nodes, with their location, demand, and the drop cables connecting them to 

the network graph 

 the Central Office (CO) location 

 a set of locations, where these distribution units may be installed 

These altogether define a network graph        , the set of DU locations   {   }    and the 

set of demand points (potential subscribers)   {  }   . The set of graph edges represent all the 

“available network links”, which could be used in the cable plant. The graph model of the schematic 

network of Figure 2 is given on Figure 3. 

e 2

e
3

e1 e4

Graph edge

Graph node

 

FIGURE 3 NETWORK GRAPH 

A set of parameters is assigned to these network elements, e.g. length and cost of edges, location 

(coordinates) of demand points, or capacity of distribution unit locations. By these parameters and 

properties of nodes and edges, the various network elements, and the role of nodes or edges in the 

network graph model is identified. Figure 4 shows the parameterized network graph model, prepared 
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for calculations, while on Figure 5, a respective network topology is given, with DU locations, demand 

point groups and the set of actually used network links. 

Obviously the model is flexible in the sense that the optional parameters may be defined and 

assigned to graph elements. Such flexibility allows the use of any specific network inventory and GIS 

database, while the clear schematic graph structure keeps the network modeling straightforward.  
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FIGURE 4 PARAMETERIZED NETWORK GRAPH MODEL 
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2.2. COST FUNCTION (EXPENDITURES) 

The necessary investment consists of capital expenditures (CAPEX), i.e. the cost of deploying the 

network; and operational expenditures (OPEX) for maintenance and operation costs [42]. Beyond this, 

both capital and operational expenses may be divided into topology-dependent and topology 

independent components. E.g. fiber costs obviously depend on the topology, while rental of the CO 

building does not. Table 1 and the following paragraphs give an overview of the decisive network 

deployment cost factors, their significance and topology dependency. Since the study is devoted to 

topology design and optimization, the focus will be on topology-dependent network deployment costs 

(CAPEX). 

2.2.1. NETWORK EQUIPMENT 

The central office (CO) serves as the interconnection between the access network and higher 

network segments (e.g. metro / core network). Active equipment is used in the CO that requires 

power supply and cooling. Their price may be significant, and partially topology-dependent: the more 

distribution units (Splitter, Switch or DSLAM) are deployed, the more complex central office 

infrastructure is necessary. 

Demand points are connected to the CO via distribution units (DUs). In PON networks, the demand 

points are served through relatively cheap passive optical splitters – while the active DUs used in AON 

and DSL network are expensive and require power supply that also increases the operational expenses 

(OPEX). The amount of necessary distribution units depends on the structure of the point-multipoint 

topology. 

Subscriber units serve as the termination of the access network at the demand points. The 

contribution of these to the total cost is determined by the amount of demand points, thus 

independent from the network topology. 

Formally, the equipment cost is composed of the central office (CO), the distribution unit (DU) and 

the subscriber unit (SU) costs: 

               ∑    

           

 ∑    

      

 (1) 

2.2.2. CABLE PLANT 

The cost of the cable plant has two fundamental components: the labor cost of deploying the cables, 

and the raw material cost of the cables deployed. Cable deployment is typically the most significant 

among all cost factors, and obviously both are heavily topology-dependent. Deployment cost may be 

further detailed: (1) trenching and (2) installing a cable in an existing cable duct (installation cost,   ) is 

independent from the amount of fibers to be deployed, while a smaller, additive cost represents the 

price of each fiber itself (fiber cost,   ). 

Co-existence of these components results in a stepwise cost function, as depicted on Figure 6. 

Difference between labor and installation costs may be overwhelming if complete trenching (digging) 

is necessary, but moderate, if existing cable ducts are used. 
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FIGURE 6 CABLE PLANT COSTS 

More formally, by summing up the cost of deployment and fiber: 

                                ∑         ∑      

    

  

        

 (2) 

Here      is an auxiliary function indicating the installed capacity upon link e (obviously the labor 

cost is to be paid only for installed network links). The trenching and installation costs are aggregated 

into       cable deployment cost. The fiber costs on link   are represented by      . 

This cost function, with possibly different values for every network link, or group of network links 

offers the possibility to include infrastructure information into the network model: various cable 

deployment costs can be assigned to various areas, subject to cabling technology or civil work 

required. E.g. existing cable ducts may be re-used with         labor cost, or aerial cables may be 

cheaper to install than trenching. The cost function hence allows the consideration of infrastructure 

information, and the cost decreasing (increasing) effect of existing (missing) network elements, which 

again extends the flexibility of the model, but preserves its formal and abstract nature. 

2.2.3. TOPOLOGY DEPENDENCE 

By summing up network equipment (1) and cable plant (2) costs, the overall network deployment 

cost is as follows: 

           ∑    

           

 ∑    

      

 ∑         ∑      

    

  

        

 (3) 

Namely the total cost is the sum of the {Central Office costs} + {Subscriber Unit costs} + {Distribution 

Unit costs} + {Cable plant costs}. 

Considering the optimization problem, these costs are divided into topology dependent and topology 

independent costs. Note that topology independent costs are constants in the optimization problem 

itself, but these will play an important role during the cost estimation and techno-economic evaluation 

later. 

Regarding equipment, summarized cost of subscriber units (∑   ) does not depend on the topology 

(only on the amount of demand points), therefore these may be removed from the optimization 
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objective as constants. Cost contribution of the distribution units (∑   ) increases with the amount of 

demand point groups. Cost of the central office (   ) typically depends on the amount of demand 

points (topology-independent, constant), and also on the amount of demand point groups. The latter 

component will be merged with the cost of the distribution units (   ) into a new variable for this 

combined cost (   
 ). Therefore the optimization problem reduces to:  

                    ∑    
 

      

 ∑         ∑      

    

  

        

 

Table 1 summarizes the main cost factors, indicates their topology dependency, and also their 

significance or weight relative to other cost factors. The latter needs further explanation, which is 

given in Section 2.5 – it naturally follows the characteristics of the respective network technologies, 

e.g. active network elements have higher cost than passive ones. 

TABLE 1 SUMMARY OF COST COMPONENTS 

Cost component Topology dependency Significance 

Network 
equipment 

Central Office Medium High 

Distribution Unit Medium 
AON, DSL: High 

PON: Low 

Subscriber Unit None Medium 

Cable plant 

Labor cost High Extremely high 

Cable High High 

Fiber High Low 

2.3.  TECHNOLOGY DEPENDENT CONSTRAINTS 

Once the graph model and its parameters are defined, additional rules constraining the set of “valid” 

topologies may be specified. The discussed NGA network technologies, according to their physical 

capabilities, set different constraints on the topology. Two primary limitations have to be considered, 

namely network range and capacity of the distribution units. 

Network range leads to various network deployment rules for every technology, in some cases the 

overall CO-demand point distance (     , in other cases the length of the feeder (    
    

) or 

distribution network segment (    
    ) is constrained. The distribution unit capacity constraints ( ) are 

similar for all technologies, at least on the abstraction level: the maximal splitting ratio of an optical 

splitter or the switching capacity of an active distribution unit has to be considered. 

During the topology design process, not only the previously mentioned costs are to be minimized, 

but also these constraints are to be fulfilled, which determine the set of valid topologies. In the next 

paragraphs, the specific constraints are discussed for each type of NGA technologies. 

Passive Optical Networks have network range for the complete access network segment, i.e. the 

demand point-CO distances are limited (    ). This       value depends on the optical splitting ratio. 

Obviously, the maximal split ratio of the optical splitter ( ) is also bounded. Typical values for recent 

GPON systems are 20-60 km network range with 1:64 splitting ratio [12].  
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Active Optical Networks (e.g. Active Ethernet systems) are constrained by the capacity of the 

switching unit ( ), by the range of the feeder (    
    

) and distribution network segments (    
    ), 

respectively [15]. 

These constraints are more strict for DSL networks, since the length of the copper loop (i.e. the 

distribution segment,     
    ) decisively affects the available bandwidth. For recent VDSL networks, 

broadband access limits the DSLAM-demand point distance typically in the range of 300-1000 m [21]. 

Capacity of the DSLAM ( ) also constrains the topology. 

The point-to-point dedicated fiber architecture is only limited by the length of the optical fiber 

(    ). Furthermore, even this single constraint is a loose constraint: it may cover sufficiently long 

distances in practice. 

Table 2 concludes these constraints. We note that we are aiming at a higher level of abstraction in 

the modeling and problem formulation, in order to keep distance from present NGA technology 

specifications. These constraints offer realistic restrictions for valid NGA topologies. Flexibility of the 

graph model and its parameters supports virtually any additional physical or administrative limitations 

to the optimization problem as specific additional constraints.  

TABLE 2 TOPOLOGY DEPENDENT CONSTRAINTS 

Network technology 
Network range (segments) 

Distribution unit 
capacity 

Feeder Distribution 

Passive Optical Networks 
(PON) 

           

  
Active Optical Networks 

(AON) 

    
    

     
     

Digital Subscriber Line 
(DSL) 

Point-to Point Fiber 
(P2P) 

     - 
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2.4. OPTIMIZATION PROBLEM FORMULATION 

With the above described representation, the NTD problem can be interpreted as a (minimal cost) 

subgraph of  , that connects the demand points to the CO in a point-multipoint (or point-to-point) 

architecture through a subset of network links, using several properly located distribution units, 

fulfilling all the DU capacity, connection length and network capacity constraints. 

Formally, we are given a network graph        , consisting of edges   and nodes   representing 

the available network links, the set of DU locations   {   }    and the set of demand points 

(subscribers)   {  }   . 

OBJECTIVE: 

                                  
  ∑         ∑      

    

  

        

 

The optimization tends to minimize the topology dependent cost of network deployment. All the 

edges     have a nonnegative length     , a cable deployment cost       and fiber cost      . 

These costs are typically but not necessarily proportional to the length of the link, and depend on the 

different cabling technologies and existing infrastructure.      is an auxiliary function indicating the 

installed capacity upon link  . 

AUXILIARY VARIABLES: 

            
        

Indicator of the demand point-DU location assignment, value is 
1 only if demand point   is connected to DU location  . 

          The amount of DUs at location  . 

     The total amount of Distribution Units deployed. 

            
        

Indicator of edge   on the path between demand point   and its 
assigned DU location. 

            
        Indicator of edge   on the path between     and the CO. 

CONSTRAINTS: 

(1)      ∑  
 

   

   

(2)      ∑  
 

   

      

(3)           ∑   
 

    

 ∑   
 

    

 {
  

             

                 
                  

 

(4)           ∑   
 

    

 ∑   
 

    

 {
                

                    
             

 

(5)      ∑        
 

   

 ∑(  
  ∑       

 

   

)
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(5a)      ∑       
 

   

     
    

 

(5b)      ∑(  
  ∑        

 

   

)

   

     
     

(6)           ∑  
 

   

 ∑  
 

   

 

(7)    ∑  

   

 

Constraints (1) ensure that every demand point is served by exactly one DU, (2) stands for the DU 

capacity constraints: the summarized capacity of DUs located at a DU location is an upper bound on 

the amount of demand points connected to that DU location. The flow conservation (Kirchhoff) 

constraints (3) and (4) keep the flow problem from splitting, and ensure that every demand point has a 

dedicated flow from its DU (distribution network), and enforces all DUs to be connected by a 

dedicated flow to the CO (feeder network). Constraints (5), (5a) and (5b) provide the network reach 

(distance) limits for the total connection length, feeder and distribution network segments, 

respectively. Finally, constraints (6) and (7) provide the auxiliary data for the cost function: the      

installed capacity for every link, and the amount of demand point groups, i.e. the amount of DUs. 

This Quadratic Programming (QP) formulation, its linearization and relaxation opportunities are 

discussed in Section 6.1. It was necessary due to its clear formulation and model description 

capabilities. Clearly, the novelty of our approach and model is not the existence of a graph model in 

itself, but as it was concluded in the introductory on related work (Section 1.3), such detailed and 

realistic network model, optimization objective and constraints, including all important characteristics 

of an NGA network deployment, i.e. cable plant and equipment costs, network infrastructure and the 

map of the service area, was not addressed earlier. 

2.5.  SPECIAL CASES 

The optimization problem was defined by its variables, objective function and constraints in the 

previous section. In its general form it covers all the discussed NGA technology types: this general 

approach is beneficial for theoretic modeling and analysis of the problem. 

On the other hand, a classification of various present and future access network technologies is 

possible. Among the permanently evolving network technologies and standards different families are 

noticeable. Based on the different concepts driving these developments, a primary classification 

differentiates between Passive Optical Networks (PON), Active Optical Networks (AON), and DSL 

network in the field of point-multipoint access networks, and a completely different approach of Point 

to Point (P2P) optical networks, offering a dedicated fiber infrastructure for every demand point.  

Without losing the necessary abstraction level or committing ourselves to a specific recent standard, 

these classes of present and future NGA network technologies will be described as special cases of the 

optimization problem formulated in the previous section, by identifying the most prioritized parts of 

the objective (cost) function or the constraint set.  This classification, outlined in the following 

subsections is a significant contribution towards highly efficient, specialized optimization algorithms, 

therefore serves as a fundamental part of the study.  
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2.5.1. SPECIAL CASE #1 (PASSIVE OPTICAL NETWORKS, PON) 
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FIGURE 7 PASSIVE OPTICAL NETWORK (PON) 

In a passive optical network, the distribution unit equipment is passive (e.g. a power splitter in TDM 

PONs or a wavelength switch in WDM PONs), hence the feeder and distribution network segments are 

in the same optical domain, without signal regeneration at the DU. Therefore the network range 

limitations stand for the complete optical network segment, i.e. between the CO and the SUs. 

However, due to beneficial characteristics of the optical fiber, these network range limitations are 

fairly permissive for fully optical access networks compared to other access network technologies, e.g. 

DSL networks. On the other hand, these are not negligible, especially due to the power splitters of 

passive optical networks: the attenuation depends on the splitting ratio. High capacity distribution 

units decrease the available network reach. 

Capacity constraints of the optical splitters have more significant effect on the topology, in passive 

optical networks the DU capacities are typically lower than for their active counterparts. Primarily 

these constraints are affecting the set of valid topologies. 

Regarding topology dependent network deployment cost, fiber deployment in the distribution 

network, between every demand point and its corresponding distribution unit (splitter) dominates 

over the relatively cheap, passive optical splitters, and the less significant feeder network. Moreover, 

cable plant costs may be further refined. Typically every demand point has to be connected to the 

access network, thus fiber installation is necessary along the whole street system. Hence cable 

deployment costs are more or less topology independent. Therefore, during the optimization process, 

cable plant costs will be incorporated in a single link cost   
     which stands for the fiber cost and 

increased by the respective installation costs. 

More formally, in this special case the connection length constraints are relaxed, the        and 

      values are substituted by increased   
     values, while the     distribution unit costs are still 



26 The topology design problem |  

 

considered. This way we get a challenging two-component optimization problem, where the cost 

function is a combination of two components: DU and cable plant costs. These altogether result in a 

slightly simplified special case of the NTD problem: 

OBJECTIVE: 

                                  
  ∑   

    

    

 

AUXILIARY VARIABLES: 

            
        

Indicator of the demand point-DU location assignment, value is 
1 only if demand point   is connected to DU location  . 

          The amount of DUs at location  . 

     The total amount of Distribution Units deployed. 

            
        

Indicator of edge   on the path between demand point   and its 
assigned DU location. 

            
        Indicator of edge   on the path between     and the CO. 

CONSTRAINTS: 

(1)      ∑  
 

   

    

(2)      ∑  
 

   

       

(3)           ∑   
 

    

 ∑   
 

    

 {
  

             

                 
                  

 

 

(4)           ∑   
 

    

 ∑   
 

    

 {
                
                    
             

 
 

(5)      ∑        
 

   

 ∑(  
  ∑         

 

   

)

   

      relaxed 

(6)           ∑  
 

   

 ∑  
 

   

  

(7)    ∑  
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2.5.2. SPECIAL CASE #2 (ACTIVE OPTICAL NETWORKS, AON) 
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FIGURE 8 ACTIVE OPTICAL NETWORK (AON) 

Due to the fully optical cable plant infrastructure, the network range limitations are really permissive, 

even more then for passive optical networks, since the active distribution units in this case do not 

increase attenuation, rather make signal regeneration. Moreover, the active equipment divides the 

optical layer in two, resulting in distinct network range limitations for the feeder and distribution 

network segments. 

As stated earlier, capacity of the active distribution units typically exceeds that of the passive 

equipment. These altogether move the focus mostly on the cost function, since the constraints permit 

a considerably wide set of valid topologies. 

On the other hand, the active distribution units, compared to the passive ones require significantly 

higher investment, especially if also the operation and maintenance costs are considered, due to the 

necessary power and cooling supply, and also due to the higher risk of breakdowns. The cable plant 

costs, particularly the distribution network has also noticeable contribution to the topology dependent 

network costs. 

According to the problem formulation, in this case the length constraints are relaxed, the DU capacity 

constraints are kept. The special case is mostly characterized by the cost function: the overwhelming 

DU costs (   ), and also the lower distribution network costs are considered, primarily through the 

fiber (  ) costs, as described for PON networks. 
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The formal representation of the special optimization problem: 

OBJECTIVE: 

                                  
  ∑   

    

    

 

AUXILIARY VARIABLES: 

            
        

Indicator of the demand point-DU location assignment, value is 
1 only if demand point   is connected to DU location  . 

          The amount of DUs at location  . 

     The total amount of Distribution Units deployed. 

            
        

Indicator of edge   on the path between demand point   and its 
assigned DU location. 

            
        Indicator of edge   on the path between     and the CO. 

CONSTRAINTS: 

(1)      ∑  
 

   

    

(2)      ∑  
 

   

      low 
significance 

(3)           ∑   
 

    

 ∑   
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 ∑   
 

    

 {
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  ∑       
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2.5.3. SPECIAL CASE #3 (DIGITAL SUBSCRIBER LINE NETWORKS, DSL WITH OPTICAL FEEDER) 
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FIGURE 9 DIGITAL SUBSCRIBER LINE NETWORK (DSL) 

Physical limitations on the (copper) distribution network segment are dominating the network reach 

constraints in this case, and obviously the DU capacities are also limited. 

Regarding the cost function, it is important to note that these networks are typically installed in areas 

covered by already existing copper infrastructure, therefore cost of the distribution network is 

significantly lower due to re-use of copper instead of new optical fiber deployment. The active 

distribution units, as described in the previous section, require a high capital as well as high 

operational investment (CAPEX & OPEX), which actually dominates the topology dependent network 

costs, since the distribution network costs are almost negligible, not like optical access network 

technologies. 

Fulfilling the copper loop constraints, and concurrently considering the capacity of the distribution 

units is in the heart of the problem in this case; according to the problem formulation, the distribution 

loop length (    
    ) and DU capacity constraints are kept, and the DU costs (   ), are considered for 

minimization. 
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In terms of optimization problem formulation: 

OBJECTIVE: 

                                  
  

AUXILIARY VARIABLES: 

            
        

Indicator of the demand point-DU location assignment, value is 
1 only if demand point   is connected to DU location  . 

          The amount of DUs at location  . 

     The total amount of Distribution Units deployed. 

            
        

Indicator of edge   on the path between demand point   and its 
assigned DU location. 

            
        Indicator of edge   on the path between     and the CO. 

CONSTRAINTS: 

(1)      ∑  
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2.5.4. SPECIAL CASE #4 (POINT TO POINT FIBER ACCESS NETWORKS, P2P) 
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FIGURE 10 POINT-TO-POINT FIBER ACCESS NETWORK (P2P) 

Most of the discussed NGA network technologies have point-multipoint architecture. However, 

dedicated fiber access is a reasonable choice in some cases (e.g. for business users, FTTB systems or 

mobile backhaul applications). Moreover, the feeder part of any point-multipoint system is treated as 

a dedicated point-to-point network, connecting the distribution units to the central office. Therefore 

we need to discuss the optimization of point-to-point network topologies. 

In a point-to-point optical access network, we have only one physical constraint for the length of the 

optical connections, between the CO and the demand points. This is typically a really permissive 

constraint: the dedicated fiber architecture offers the most robust optical transmission among the 

presented technologies, in terms of power budget and attenuation aspects. 

Absence of DUs restricts the cost function to cable plant costs, without the feeder vs. distribution 

network distinction. It can be interpreted as the distribution network segment, with the CO serving as 

a distribution node. Topology dependent cost is reduced to the distribution network: primarily the 

dominating cable deployment (  ) costs, and the fiber (  ) costs with lower priority. 

In terms of problem formulation, the problem is significantly reduced, mostly due to the absence of 

the feeder network: 

OBJECTIVE: 

                             ∑         ∑      

    

  

        

 

AUXILIARY VARIABLES: 

            
        Indicator of edge   on the path from demand point   to the CO. 
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CONSTRAINTS: 

(3)           ∑   
 

    

 ∑   
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(4)           ∑   
 

    

 ∑   
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(5)      ∑        
 

 

      

(6)           ∑  

   

 

2.5.5. SUMMARY OF SPECIAL CASES 

A graphical overview of these special cases is given in the following figure, highlighting the 

constraints and cost factors of higher significance. The relaxed constraints and cost (objective) 

components are represented by clear cells in the table. Significance of the non-relaxed cost 

components and constraints are indicated by vertical bars and darkness of the table cells at the same 

time. 

 

FIGURE 11 SPECIAL CASES OF THE NGA TOPOLOGY DESIGN PROBLEM 
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3. ALGORITHMIC ANALYSIS 

The NGA Topology Design problem was formulated in the previous section, followed by its most 

important special cases. The next step is the algorithmic analysis of the formulated, mathematical 

problem. The first straightforward question is on complexity: is it possible to solve the problem in 

reasonable time at all? 

The “reasonable time” obviously is not an exact term, it needs further clarification. Network planning 

or topology design is an offline problem; hence time complexity requirements are not strict. However, 

the typical problem size is the service area of a single central office, i.e. graphs with thousands or even 

tens of thousands of nodes. These large scale problem instances do not allow algorithms with 

exponential complexity. Therefore, the fundamental question is not on the running time, but on 

general applicability: algorithms with exponential complexity will not provide solutions for the 

addressed problem size. Hence “reasonable complexity” refers to algorithms that are capable to 

handle scenarios with 10.000+ nodes. 

What follows is the algorithmic analysis of the NGA Topology Design problem in its general form and 

special cases, in order to decide whether it is possible to find the exact optimum in polynomial time or 

not (Section 3.1). In cases where the exact optimization turns to be intractable, the next important 

question addresses approximability: how close can we get to the optimum solution within polynomial 

time (Section 3.2)? 

3.1.  COMPLEXITY ANALYSIS 

Since the problem is now formulated as an optimization problem, the primary question addresses its 

complexity. The generally used methodology for proving complexity results is to construct reduction 

schemes. The so-called Karp-reduction supports proof of statements like “the problem is at least as 

complex as problem  ”, which   used to be an appropriate known NP-hard problem. Via bi-directional 

proofs the Karp-reduction also supports NP-completeness statements [54]. 

More information can be derived from the so-called linear reduction (L-reduction) scheme that 

maintains not only complexity, but also approximability features of the problem, being bi-directional in 

every case. A linear reduction scheme between    and    shows equivalence of two problems: any 

solution for    directly leads to a solution of    via the L-reduction scheme [55]. 

In the sequel, such linear reductions will be given for the earlier defined special cases of the NTD 

problem, in order to prove that their complexity is equal to other already known mathematical 

problems. The following subsections have a uniform structure: at first, an already known (NP-

complete) mathematical problem is defined (“base problem”). Then a mutual linear reduction is given, 

between the respective special case and the base problem, and conclusion is drawn on complexity of 

the addressed NTD special case, according to the complexity of the base problem. 

Finally, complexity features for the NTD problem in general are also addressed. 

3.1.1. SPECIAL CASE #1 (PASSIVE OPTICAL NETWORKS, PON) 

The Capacitated Facility Location (CFL) problem is a well-known optimization problem, with 

numerous applications, e.g. in the field of logistics, transportation, hub location or even network 

design problems. In the heart of the problem lies the decision about locations where facilities will be 

opened, and demand points which will be served through these facilities, e.g. a set of grocery stores 

for the residents of a city. There is a cost assigned with opening a facility (i.e. the cost of opening a 
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store), and also with the connection between a demand points and a facility (e.g. the distance 

between a home and the corresponding store) . In the capacitated version, the facilities may serve a 

limited amount of demand points, even though multiple facilities may be opened at the same location, 

increasing the facility costs. 

Definition 1 (base problem):  Capacitated Facility Location (CFL) problem [61] 

In a capacitated facility location problem we are given two sets:  , the set of facilities and  , 

the set of clients (i.e. demand points). There is a specified distance       between every pair 

       , costs      for opening facilities    , and capacities    respectively. Multiple 

facilities can be opened at the same site, and each copy incurs cost   , and serves    clients. A 

multi-set   of facilities has to be identified to serve the clients in   by the facilities in   such 

that the total facility cost plus the total service cost is minimized. That is, if a client     is 

assigned to a facility        then we want to minimize         ∑       ∑           . 

LINEAR REDUCTION 

Lemma 1: The NGA Topology Design (NTD) problem in its special case for PON networks, i.e. 

when the       values are merged into the increased   
     values, and the capacitated 

facility location (CFL) problems are equivalent under linear reductions (L-reductions). 

Proof 1: A polynomial time reduction scheme is given for both directions. 

CFL       : Given a CFL problem instance, including the facilities, clients, distances, etc. An NTD 

problem will be constructed, which is equivalent to the CFL problem, i.e. it has the same optimum.  

The construction ensures that the two problems are identical, i.e. they have coincident optimum. 

This NTD problem instance can be constructed in polynomial time obviously, and an optimal solution 

for it also solves the corresponding CFL problem. It both problems, we have a points to be assigned to 

some nodes in central position. What makes a significant difference is the existence of the graph (that 

has to be followed by the connections) in the case of the NTD problem, while in a CFL problem the 

Euclidean space may be used, without restrictions. Figure 12 shows a pair of CFL and NTD problems, in 

which the clients / demand points, and the facilities / DUs are at the same position. The original graph 

of the NTD problem is faded but visible at the CFL problem. 

The CFL        construction is composed of the following steps: 

 create the NTD graph        : 

o      , i.e. from the set of clients and facilities 

o   {             }, i.e. create a full graph, 

 the set of DU locations represent the facilities: 

o    , 

 the set of demand points represents the and clients: 

o    , 

 edge cost values are to be assigned as: 

o   
               , i.e. the NTD edge costs will be equal to the CFL costs (distances) 

 DU capacities should be the same as the corresponding facility capacities: 

o       

This construction ensures equivalence of the two problems, i.e. their optimum coincides. 
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FIGURE 12 FACILITY LOCATION PROBLEM – NETWORK TOPOLOGY DESIGN PROBLEM TRANSFORMATION 

       CFL: In this case, we are given a NTD problem instance, including the graph, demand 

points, DU locations and edge costs. Now a CFL problem instance with the same optimum value and 

same solution will be constructed as follows: 

 the set of CFL clients will be equivalent to the set of NTD demand points: 

o     

 the set of facilities will be equivalent to the set of DU locations: 

o     

 all other nodes of the NTD graph are unnecessary, since the CFL problem does not follow the 

graph itself: remove nodes of       

 the cost of assigning a client to a facility in the CFL problem will be equivalent to the cost of 

the shortest path (  ) between the corresponding demand point and DU location in graph   

of the NTD problem: 

o     ∑   
        

 

 the    capacity values of the facilities should be equal to the respective   capacity of the DUs: 

o      

 the    cost of the facilities is calculated as the sum of the     DU cost and the cost of the 

feeder link, i.e. the shortest path from the CO to DU location    : 

o        
 ∑   

            
 

This construction results in a CFL problem instance. Its optimum coincides with the original NTD 

problem. We note that shortest path algorithms are running in polynomial time, therefore this 

reduction has polynomial complexity, and it provides identical optimality features for the CFL problem 

and the original NTD problem.  

Corollary 1a: Since the facility location problem is known to be NP-hard [61], according to 

the Linear reduction, the        special case itself is also NP-hard. 
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3.1.2. SPECIAL CASE #2 (ACTIVE OPTICAL NETWORKS, AON) 

Obviously there are similarities between the        and        problems. The most significant 

difference is due to the distribution units: in a PON network, the DUs are relatively cheap, having low 

capacity. In an AON network, the DUs have much higher capacity, and the DU costs are much higher at 

the same time. It has an important impact on the optimization problem: minimizing the amount of 

DUs comes into focus. Due to their high capacity, an AON network typically requires just a few DUs to 

be deployed, not a large set of DUs as for PON networks. 

These altogether imply that in        problem, the amount of necessary DUs (we denote it by  ) 

will be treated as a pre-defined constant. Since the permissive distance constraints allow an extent of 

demand points being assigned to DUs that completely fills the DU capacity, the minimal amount of 

necessary DUs is derived from the population ( ) and  the DU capacity (  :    
 ⁄ . The 

overwhelming cost of DUs enforces their maximal utilization, hence (near) minimal amount of DUs 

leads to the minimal cost topology. 

There is a well-known algorithmic problem, namely the capacitated p-median problem (CPMP), which 

meets the above described interpretation of the        problem, therefore it will be used in the 

linear reductions later: 

Definition 2 (base problem):  Capacitated p-median problem (CPMP) [64] 

In a p-median problem, a set of points  , distance values  {              }, and an integer 

value   is given. The problem is how to select   points of     as medians: all other points 

in     have to be assigned to their nearest median. Objective of the optimization problem 

is to minimize the sum of distances between all points in     and their respective medians. 

In the capacitated version of the problem, each median can have a maximum of   points 

assigned. 

The relationship between the capacitated facility location (CFL) and the capacitated p-median 

problems (CPMP) is interesting: the amount of medians is given as a constraint for p-median problems, 

while it is involved in the optimization process for facility location problems. Therefore opening a 

facility is similar to violating that constraint, and it results in additional cost for that. This technique is 

known as Lagrangean relaxation: some constraints are integrated in the objective itself with a 

“penalty” cost for violating them, i.e. the facility cost for facility location problems (see [72], p. 167). 

LINEAR REDUCTION 

Lemma 2: The NGA Topology Design (NTD) problem in its special case for AON networks, i.e. 

when length constraints are relaxed, mainly the DU capacity constraints and costs (   ) are 

characterizing the problem, and the capacitated p-median problems (CPMP) are equivalent 

under linear reductions (L-reductions). 

Proof 2: A polynomial time reduction scheme is given for both directions. 

CPMP       : Given a capacitated p-median problem (CPMP) instance, an NTD problem instance 

will be constructed, which is equivalent to the CPMP problem, i.e. they have a coincident optimum: 

 given the set of nodes   for the CPMP problem, the graph         of NTD is constructed: 

o    , 

o   {             }, i.e. it will be a full graph 
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 all nodes of the CPMP problem will be treated as available DU locations in the NTD problem: 

o    , 

 similarly, every node of the graph is a demand point at the same time: 

o     

 the edge cost values will be equal to the distance between the two nodes of the edge in the 

CPMP problem: 

o   
                 , 

 the DU capacities will be set to     ⁄ , according to the explanation above: 

o       ⁄  

     prices will be set to a value which is high enough to dominate fiber costs: 

o            

 an arbitrary node in   will be chosen as the CO. 

This construction leads to an NTD problem in which the DUs are representing the (capacitated) 

medians. While DUs have a capacity of     ⁄ , added that the DU costs are dominating the fiber costs, 

an optimal solution of the NTD problem requires exactly   DUs to serve the   demand points. These 

DUs will be located at positions minimizing the distribution network costs, i.e. distance sum of the 

CPMP problem. These altogether ensure coincidence of the optimum for the two problems. 

The construction requires polynomial time itself, and a solution for the constructed NTD problem is a 

solution for the initial CPMP problem as well. 

           : Given an NTD problem instance, a capacitated plant location problem will be 

constructed with the same optimum. 

In order to create the respective CPMP problem, an initial graph transformation step will be made on 

the NTD problem: the shortest path between every DU location and demand points within     
     

distance will be substituted by a single edge (Figure 13). These length of these edges will be equal to 

the length of the corresponding shortest paths, with respect to fiber costs in  :                   . 

This transformed graph will be referred to as           . 

 

FIGURE 13 GRAPH TRANSFORMATION FOR CPMP 

Using this transformation of the NTD problem, the equivalent CPMP problem will be constructed as 

follows: 

 the set of points   for the CPMP problem will be identical to the nodes of   : 
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o      

 distance between nodes of   should be equal to the length of edges between them in    if 

that edge exists, and   otherwise: 

o        {
                       

                        

 The integer constant  , i.e. the amount of medians is calculated based on the DU capacities 

( ) and the population: 

o       ⁄  

 capacity of the medians will be equal to the capacity of the DUs: 

o     

This construction leads to a CPMP problem with   medians, i.e. the minimally necessary amount of 

DUs in the        problem, minimizing the distribution network fiber costs at the same time. 

The transformation clearly works in polynomial time, and the resulting p-median problem has 

identical optimality features as the original        problem.  

Corollary 2a: Since the k-median and the capacitated k-median problems are NP-complete 

[66], according to the Linear reduction,        special case of the NTD problem remains NP-

complete. 

We note that if the assumption about DU costs dominating over link costs does not stand, we get a 

problem similar to that described for PON networks, which was also NP-hard. 

3.1.3. SPECIAL CASE #3 (DIGITAL SUBSCRIBER LINE NETWORKS, DSL) 

For the following two special cases, the Steiner-tree problem will be used as the base problem. A 

Steiner-tree seems to be similar to a spanning tree, however it does not have to span all nodes of the 

graph, just a subset of its nodes, the so-called terminal nodes. Unfortunately this minor difference 

changes everything: while the minimum cost spanning tree problem can be solved with a quick greedy 

algorithm, the Steiner-tree problem is NP-hard.  

Definition 3 (base problem): Steiner-tree problem [57] 

A Steiner-tree problem instance is defined by a graph        , non-negative weights 

       
  for each    , and a subset of nodes     called terminals. The optimization 

problem is to find a minimal cost subtree of  including all terminal nodes in  . 

The Steiner-tree problem will be used as the base problem to prove NP-hardness, with a special 

graph transformation: the original graph   of the NTD problem is transformed to a    graph, as shown 

on Figure 14. This transformed graph is a 2-level tree, having the central office (CO) as its root, the DU 

locations ( ) in the middle level, and the demand points ( ) as its leaves. All the DU locations are 

connected to the CO (with an equal     link cost), but only those demand points are connected to a 

particular    DU location, which are within reach of it, e.g. the distribution loop length does not 

exceed its limit:  (     )      
    . 

This graph transformation could be made in polynomial time, and it maintains optimality and validity: 

the same DU selection and demand point-DU assignment is the optimal result for both the original and 

the transformed problems, since the optimization objective has the same value (DU costs) and the 

distribution loop length constraints are fulfilled, through the construction of   . What follows is that 

solution of the NTD problem in    and in the original graph is equivalent. 
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FIGURE 14 STEINER TREE TRANSFORMATION OF DSL NETWORKS 

An optimal solution of the NTD problem in    requires a minimal set of DUs connecting all the 

demand points – which is on the other hand a Steiner-tree problem, considering the demand points 

and the    as terminal nodes. Adding a DU to the topology means adding its upper level edge to the 

Steiner-tree with cost    , therefore it leads to the same cost increase in both problems. Therefore, 

the minimal cost Steiner-tree is equivalent to the minimal set of DUs. 

Lemma 3: The NGA Topology Design (NTD) problem in its special case for DSL networks, ie. 

when loop length (    
    ) and DU capacity constraints are kept, and primarily the DU costs 

(   ) are considered for minimization, and the Steiner-tree problems are equivalent under 

linear reductions (L-reductions). 

Proof 3: A polynomial time reduction scheme is given for both directions. 

         Steiner-tree: The above described graph transformation is necessary for the linear 

reduction. Optimum of the Steiner-tree problem in the transformed graph is identical to that of the 

original NTD problem; therefore an “oracle” capable to solve the Steiner-tree problem also solves the 

NTD problem special case for DSL networks. 

Steiner-tree        : An         problem instance will be constructed, based on the given 

Steiner-tree problem. The construction will lead to a “degenerate” NTD problem, in which the 

optimization is restricted to the feeder network: every DU location will have exactly one demand point 

assigned. It will be achieved by a sufficiently short distribution loop length constraint. The resulting 

NTD problem will be equivalent to a Steiner-tree problem, with the CO and the DU locations as its 

terminals, i.e. the Steiner-tree will be feeder network itself. 

The        problem is constructed in the following steps: 

 the graph         of the     problem will be identical to the graph of the Steiner-tree 

problem 

 the Central Office  will be at an arbitrarily chosen terminal node of the Steiner-tree problem 
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 the set of available DU locations in the     problem will be identical to the terminal nodes of 

the Steiner-tree problem (except the terminal node which became the CO): 

o   {  }    

     installation costs will be equal to the edge weights of the Steiner-tree problem, while 

fiber costs will be set to zero: 

o         

o      

 the distribution loop length constraints will be set to a sufficiently small distance, which 

separates the “zone” of every DU location, i.e. it will be shorter than the distance of the 

closest pair of DU locations: 

o      
          (    (     )) 

 a set of “artificial” demand points will be added in a way that there is only one demand point 

within      
    distance from any DU location, and every demand point has only one DU location 

within      
    (i.e. it immediately defines a DU – demand point assignment): 

o           {                    
   }    

In the optimal topology for this specially constructed the        problem, every DU locations (i.e. 

terminals of the Steiner-tree problem) will have exactly one demand point assigned. The feeder 

network of the     problem will be a minimum cost tree, which connects the CO and the DUs (i.e. 

terminals of the Steiner-tree problem), minimizing the installation costs   , which is identical to the 

     edge weights of the Steiner-tree problem. Therefore, the feeder network itself gives the optimal 

solution of the Steiner-tree problem. 

Provided that the graph transformations are made in polynomial time, and it maintains optimality 

and validity of the solution, the two problems are equivalent under linear-reductions.   

Corollary 3a: Since the Steiner-tree problem is known to be NP-complete [58], according to 

the Linear reduction, this special case of the NTD problem is also NP-complete. 

3.1.4. SPECIAL CASE #4 (POINT TO POINT FIBER ACCESS NETWORKS, P2P) 

The        problem is more directly related to the Steiner-tree problem than the earlier discussed 

       problem: in a point-to-point access network, several nodes (the demand points) have to be 

connected to the CO. If we take the CO and the demand points as terminal nodes of the graph, we see 

the relationship with the Steiner-tree problem. Therefore, the Steiner-tree problem will be used as the 

base problem to prove NP-hardness of the        problem, but now it requires graph transformation 

different from the one used earlier for the        problem. 

LINEAR REDUCTION 

Lemma 4: The NGA Topology Design (NTD) problem in its special case for P2P networks, i.e. 

when the cable deployment cost dominates all other costs, and the Steiner tree problems are 

equivalent under linear reductions (L-reductions). 

Proof 4: A polynomial time reduction scheme is given here for both directions. 

Steiner-tree        : Given a Steiner-tree problem instance, an        problem will be 

constructed, which has the same optimum. The construction follows the above described relationship 

between the two problems: 
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 the graph         of the    problem will be identical to the graph of the Steiner-tree 

problem, i.e. it has the same set of nodes and edges 

 the Central Office (CO) of the     problem will be located an arbitrarily chosen node which 

was a terminal node (  ) in the Steiner-tree problem: 

o        

 the set of demand points in the     problem will be identical to the set of terminal nodes in 

the Steiner-tree problem: 

o      

 the edge cost values of the     problem will be assigned as follows: 

o           , i.e. the deployment costs are equal to the edge costs of the Steiner-

tree problem 

o              , i.e. the fiber costs are negligible 

 finally, the distance limitation are relaxed, i.e. set to infinity: 

o       . 

This     problem instance is a (simplified)        problem, which is equivalent to the original 

Steiner-tree problem. Therefore its optimal solution gives a solution of the original Steiner-tree 

problem at the same time. The construction has polynomial complexity. 

        Steiner-tree: the construction is simple and straightforward. The two graphs will be the 

same, the Steiner-tree will be “spanning” a subgraph of the CO and the demand points. Formally: 

 graph   of the Steiner-tree should be identical to the graph         of the     problem  

 terminal nodes of the Steiner-tree will be the nodes representing the Central Office (  ) and 

the demand points ( ) in the original     problem: 

o     {  } 

 edge weights of the Steiner-tree will be equal to cable deployment costs of the     problem: 

o            

The transformation has linear complexity, and maintains optimality features. Moreover, the optimal 

Steiner-tree itself is identical to the optimal P2P topology, with minimal deployment cost for the 

original        problem.  

Corollary 4a: Since the Steiner-tree problem is known to be NP-complete, even for planar or 

bipartite (       graphs, or with equal edge weights [58], the reduction makes this special 

case of the NTD problem also NP-complete, even with these more restricted scenarios.  

Remark: The feeder network segment of AON and DSL networks may be interpreted as a P2P 

network: the DUs are connected directly to the CO with dedicated optical fibers. 

3.1.5. NTD PROBLEM IN GENERAL 

In the previous four subsections, several special cases of the NTD problem were discussed. These 

were based on the concept of narrowing the set of loose constraints or excluding parts of the objective 

(cost function). The described special cases lead to “almost valid”, “almost optimal” solutions for a 

subset of NTD problems, with special input settings given in section 2.5. 

However, the problem even in its simplified forms remains NP-complete. 

Lemma 5: What follows is that the general case of the problem is clearly NP-complete, since 

any of its relaxations has been proven to be NP-complete. 
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Proof 5: A general NTD problem, without any restrictions on input values, is composed of the 

two above discussed optimization problems: For the feeder network part, a Steiner-tree 

problem has to be solved, for the distribution network part, a capacitated facility location 

problem is given. Both are NP-complete, what makes the NTD problem also NP-complete.   

3.2. APPROXIMABILITY STUDIES 

Even though the NTD problem and its special cases were proven to be NP-hard, our goal is still to find 

a solution for them, even for large scale scenarios. When facing such highly complex problems, two 

fundamental approaches are considered: 

 Relaxation, when a subset of the constraints is relaxed, eliminated, and the problem is 

optimized in a wider solution space. The solution may be suboptimal or even invalid for the 

original problem, but at least it is achieved in a reasonable (typically polynomial) time. 

 Approximation, in contrary leads to valid solutions. In this case the constraints are kept, but 

exact optimality is not forced, an approximation is required instead. The running time 

(complexity) has to be decreased at the expense of losing optimality. 

The fundamental requirement of practical applicability does not allow oversimplification. The special 

cases themselves are acceptable relaxations. Unfortunately, as it was proven, that extent of relaxation 

still does not allow exact optimization in polynomial time: the special cases are still NP-hard. However, 

the realistic approach would be lost with a higher level of relaxation, which is contradictory with our 

fundamental goals. 

These altogether imply that a combination of these complexity reduction principles is in demand: the 

special cases as relaxations have to be solved by approximation algorithms (heuristics). Such a 

combination is necessary for the highest quality solution achieved in a reasonable time. 

What follows in this subsection is the approximability analysis of these special cases. 

We will use the term theoretic bounds for lower bounds on the best approximation factors 

obtainable in polynomial time. Typically indirect proofs are known for these, stating “no better 

approximation factor exists, unless     ”.  

The best known approximation algorithms for an equivalent or analogous mathematical problem will 

be treated as practical bounds. These show what is surely possible, since these related algorithms can 

be interpreted as constructive proofs for some approximation ratio that is obtainable. 

It is impossible to construct any better heuristic algorithm than the theoretic bounds, and not 

reasonable to expect better than the practical bounds. 

The presented approximability results are typically corollaries of the linear reductions presented and 

proven in section 3.1 about complexity analysis, therefore the numbering is consequent to that 

section. 

Beyond the well-known family of NP-hard problems, there are other important approximability 

classes. APX-hard problems can be approximated within factor of some     but not for every    . 

There are problems for which a polynomial time approximation scheme (PTAS) exists, which means for 

every     a polynomial time algorithm can be constructed approximating optimum with the factor 

of    . For these, at least a constant factor approximation exists (even if the approximation factor 

may be high), which is not true e.g. for the NP-hard travelling salesman problem. 
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3.2.1. SPECIAL CASE #1 (PASSIVE OPTICAL NETWORKS, PON) 

This special case was proven to be equivalent under linear reductions with the Capacitated Facility 

Location (CFL) problem (Lemma 1). 

Corollary 1b: The linear reduction maintains validity of the approximability results of the 

facility location problem for the        problem. 

The facility location problem is a well-known mathematical problem, Guha et al. prove [67] that it is 

NP-hard to approximate the facility location problem with a better constant factor than 1.463, which 

gives the theoretic lower bound also for the        problem approximation. 

The best known approximation of the capacitated facility location problem is from Mahdian et al. 

providing 2-approximation with a constructive proof, which sets the practical lower bound [63]. 

3.2.2. SPECIAL CASE #2 (ACTIVE OPTICAL NETWORKS, AON) 

This special case was proven to be equivalent under linear reductions with the capacitated p-median 

problem (Lemma 2). 

Corollary 2b: The linear reduction maintains validity of the approximability results of the k-

median problem for the        problem. 

Meyerson et al. [66]  prove that it is NP-hard to approximate the k-median problem with better 

approximation factor than   
 

 
      , which gives the theoretic lower bound also for the FTD 

problem special case. 

The best known approximation algorithm for the k-median problem however has significantly higher 

approximation ratio: Arya et al. [65] give a constructive proof for     ⁄  constant factor 

approximation, where the value of   is a variable describing complexity of an interior iterative step of 

the algorithm. It makes the approximation factor scalable, but not lower than 3. 

3.2.3. SPECIAL CASE #3 (DIGITAL SUBSCRIBER LINE NETWORKS, DSL) 

Partial equivalence under linear reduction with the Steiner-tree problem was proven (Lemma 3). 

Corollary 3b: Through a graph transformation step, equivalence of the        and the 

Steiner-tree problem was proven, therefore not only their complexity, but also 

approximability features are identical. 

The Steiner-tree problem is known to be APX-hard, i.e. a constant factor approximation algorithm 

exists for it, but not for every    , or otherwise stated, for a sufficiently small    , it cannot be 

approximated within a factor of     [57]. Value of the minimal   is not known, but the best proven 

value is 0.0062, i.e. in [58] Martin Thimm has proven that it is not possible to approximate the Steiner-

tree problem with a constant factor lower than 1.0062 unless     . Therefore this value will be 

handled as theoretic lower bound. 

On the other hand, after a series of works, the best known approximation ratio (practical lower 

bound) has been reduced to 1.55 by Zelikovsky [59]. 

3.2.4. SPECIAL CASE #4 (POINT TO POINT FIBER ACCESS NETWORKS, P2P) 

This special case was proven to be equivalent under linear reductions with the Steiner-tree problem 

(Lemma 4), therefore it has similar complexity. 
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Corollary 4b: The linear reduction maintains validity of the approximability results of the 

Steiner-tree problem for the        problem. 

Based on published results for the Steiner-tree problem, the theoretic lower bound is 1.0062 [58], 

while the practical lower bound 1.55 [59] for approximation of the        problem. 

3.2.1. NTD PROBLEM IN GENERAL 

Investigating the        and        special cases reveals the approximability of the NTD problem 

in general: 

The        special case (section 2.5.1) was describing passive optical networks, by eliminating 

      cost values (        ), while        special case (section 2.5.4), for dedicated optical fiber 

was minimizing exactly those       costs, regardless of other cost factors. Since the       ,        

(and    ) problems are solved over the same solution space (constraint set), the     problem not 

only contains them as special cases, but its objective is exactly the sum of these two special cases. 

What follows is that the lowest best possible constant approximation factor for the general NTD 

problem cannot be lower than the maximum of the weighted average of approximation factors for 

these two partial problems, since a constant  -factor approximation for such a composition of the 

problems should lead to an  -factor approximation for any of its composers as well. 

The practical lower bound on the approximation factor (2 and 1.55 for the capacitated facility 

location and Steiner-tree problems, respectively): 

   
 

{              }    

Regarding the theoretical lower bound (1.463 and 1.0062 for the facility location and Steiner-tree 

problems, respectively): 

   
 

{                    }        

Corollary 5b: The inherited practical lower bound for constant factor approximation of the general 

NTD problem is 2, and the theoretical lower bound is 1.463, i.e. it is not possible to approximate the 

NTD problem within a factor of 1.463 unless     , however the best known heuristic algorithm for 

the underlying problems provides 2-approximation (2-OPT). 

3.3. CONCLUSION 

Formulation of the NTD problem, definition of its important special cases, and the exhaustive 

complexity and approximability analysis completes the theoretic background of the problem 

addressed in my study. 

The following table concludes the results achieved regarding the theoretical background of the NGA 

Topology Design problem. Complexity and approximability analysis were carried out not only for the 

general form of the problem, but also for its special cases, motivated and defined by current and 

future NGA technology and architecture classification. 

The proven complexity, i.e. NP-completeness of problems shows necessity for heuristic 

approximation of the optimum. The approximability results show possibilities and limits of guaranteed 

approximation: no better approximation can be carried out than the theoretic lower bound, and to our 

knowledge no better approximation algorithm was published over the last decades for the underlying 

mathematical problems than the practical lower bound. 



| Algorithmic analysis 45 

 

ALGORITHMIC 
ANALYSIS SUMMARY 

    
in general 

       
special case 

       
special case 

       
special case 

       
special case 

Linear reduction - 
Capacitated 

facility location 
problem 

Capacited 
p-median 
problem 

Steiner-
tree 

problem 

Steiner-
tree 

problem 

Complexity NP NP NP NP NP 

Approximability 
(theoretic) 

1.463 1.463 1+2/e≈1,736 1.0062 1.0062 

Approximability 
(practical) 

2 2 3+2/p > 3 1.55 1.55 

TABLE 3 SUMMARY ON THEORETICAL BACKGROUND 
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4. CRITICALITY: A GRAPH THEORETIC APPROACH 

The NGA Topology Design Problem, as it was outlined in Section 0, was translated to the language of 

graph theory. In this section, we will review the problem from a graph theoretic point of view. Some 

features of the modeling graph itself may bring us closer to either the optimum or at least upper and 

lower bounds. In order to find the relevant features, we have to take a look at the constraints and cost 

factors of the NTD problem, and make an effort to describe what effect these may have on the optimal 

solution. 

Here we focus on the graph, therefore the solution space narrowing effect of constraints, especially 

the range (length) constraints are important and discussed in this section. Namely the total network 

range, plus the feeder and distribution network segment limitations will be investigated. 

Total network range has an obvious and substantive consequence: any demand point further than 

     from the CO will remain unconnected. The feeder network range also has a relatively 

straightforward effect: it constraints the DUs to be close to the CO; in the extreme case, in the CO 

itself, which degenerates the point-multipoint network to a point-to-point architecture. 

The distribution network range limitations have the most complicated effect on valid topologies, 

i.e. the solution space. These have the most interesting interaction with the graph itself, since short 

distribution network segments emphasize local features of the graph. Low     
     values have key 

importance regarding the clustering subproblem: the topology design problem tends to find coverage 

of the service area with low diameter groups, and in this case, a properly chosen set of DU locations is 

fundamental. Several critical nodes of the graph may be identified that determine the location of DUs. 

Identification of those critical nodes, the notion of criticality and its applications is the subject of the 

remainder of this section. 

4.1.  DEFINITION OF CRITICALITY METRIC AND ORDERING 

Some demand points in the graph may have a special position, especially with short distribution 

network segment constraints. Outlier nodes are the most obvious examples of nodes with significant 

effect on topology: these may require a dedicated DU in their outlier position. On the other hand, 

nodes in densely populated, central areas typically do not affect the topology seriously: a DU position 

may be chosen from a wide set of available DU locations to connect them. 

These examples are trivial for the human eye, but need some formal explanation for an algorithm. 

Such formal representation also helps deeper investigation, beyond trivial observations. In order to 

identify the necessary DU locations for complete coverage of demand points, I have introduced a 

metric to measure such significance of a node in the graph, namely node criticality. 

Definition 1: Node criticality 

Measures the amount of DU locations that can serve the demand point, i.e. from which the 

node is within      
    (distribution network reach). Formally, if     denotes the     element 

within the set of available DU locations,    denotes the     demand point,        is the 

distance of   and  ,      
    is the maximum DU-demand point distance: 

    (  )  |{   | (      )       
   }| 
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Simply said, this metric stands for the amount of DU locations, of which at least one must have a DU 

in the final topology to connect the demand point. The lower this value is, the more critical a demand 

point is. On Figure 15, the bold numbers top-right from the nodes indicates their criticality value. 

Clearly, nodes with criticality value of 1 determine that a DU has to be located in their corresponding 

DU location. 

Definition 2: Criticality code 

For every node, the DUs within distance      
    are enumerated, in ascending order of their IDs. 

Such a list is referred to as the criticality code of the node, enlisting the available DU locations 

for covering the node: 

                (  )      {   | (      )       
   } 

On Figure 15, small numbers within parentheses, e.g.  {1,2,3} indicate the criticality code of the node. 

Definition 3: Component 

A group of demand points that are reachable from exactly the same set of DU locations, i.e. a 

group of (neighboring) nodes having the same criticality code form a component. 

On Figure 15, such components are indicated with dashed lines, and these components are 

substituted by single dots on the following schematic figure (Figure 16). Such simplified form of the 

graph will be used in the following sections, since a group of nodes having the same features regarding 

criticality will be handled together. 

Definition 4: Criticality list 

DUs have a criticality list. Criticality values of the demand points within reach of a given DU, in 

ascending order serve as the criticality list of the DU. 

              {    (  )| (      )       
   } 

The underlined numbers within parentheses, under the DU locations on the figure give an example 

that helps better understanding of the criticality lists. 

We also define an ordering relation on DU locations with the help of a lexicographical ordering on 

their criticality lists. 

Definition 5: Criticality ordering 

This relation is defined on DUs, based on their criticality lists. By notation:         , if the 

criticality list of     precedes that of     in a lexicographical ordering. In the graph it means 

    has not less nodes with lower criticality value. The criticality relation reflects an ordering 

driven by importance or necessity of DU locations. 

In the given example, the DU locations have the following criticality values: 

    : (1,2,2,2,2,3) 

    : (1,1,1,2,2,2,3) 

    : (1,1,2,2,2,3) 

This implies the ordering              . 
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Lemma: The criticality relation is an ordering on the set of DUs ( ). 

Proof: Criticality relation is defined as a lexicographic ordering.   

Corollary: The criticality ordering has the following features: 

          (reflexive) 

                         (antisymmetric) 

                         (transitive) 

                       (total) 

 

1 2

3

1 {1}

1 {3}

1 {3}

1 {3}

2 {2,3}

3 {1,2,3}

2 {1,3}

2 {1,3}

1 {2}

1 {2}

2 {1,2}

2 {1,2}

(1,2,2,2,2,3)
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(1,1,2,2,2,3)

 

FIGURE 15 EXAMPLE GRAPH WITH CRITICALITY VALUES AND COMPONENTS 
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FIGURE 16 SIMPLIFIED GRAPH WITH 
COMPONENTS 

FIGURE 17 BIPARTITE VIEW OF THE SIMPLIFIED GRAPH 
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4.2. MATCHING AND CRITICALITY: AN UPPER BOUND ON DU LOCATIONS 

Based on the notion of components, a simplifying graph transformation will be made: every set of 

nodes having identical criticality codes will be substituted by a single node (according to the definition 

of criticality code, these nodes are connected to the same DUs). The transformation is shown on the 

simplified graph above (Figure 16), and re-drawn on Figure 17 to highlight the bipartite property of the 

simplified graph: the components are connected only to DU locations, but no connections exist within 

the subset of components or DUs. The upper (red) dots represent the components (groups of demand 

points with same DU connectivity), and the numbers in the dots stand for their criticality value. The 

black dots represent the DU locations. 

1 1 1

2 2 2

3

 

FIGURE 18 BIPARTITE SAMPLE GRAPH 

Considering the original topology design problem, a valid solution is a set of DUs “covering” all the 

components. A DU location will be called “active” if a DU is located there in the access network 

topology. 

Definition 1: In a graph         a matching   is a set of pairwise non-adjacent edges, i.e. 

none of the edges in   share a single common vertex. 

Definition 2: a maximal matching   is a matching that cannot be extended by adding any 

more edges to  , since any additional edges would violate its matching property. 

Lemma 1: Cardinality of any   maximal matching is an upper bound on the minimal amount 

of necessary active DU locations to cover all components, i.e.            . 

Proof 1: (Indirect) 

Any   matching can be translated to a set of active DU locations, by making active all DU locations 

which are adjacent to any edge of  . This set of active DU locations covers all components in  . 

Suppose that there exists a component   , which remains uncovered by the above described DU 

location set, i.e. none of its neighboring DU locations (e.g.    ) are adjacent to the edges of  . In the 

bipartite graph, all edges adjacent to    are connected to one of its neighboring DU locations, i.e.   

could be extended with an edge (      ), since none of its terminating nodes have adjacent edges in 

 . Which in itself is contradictory to the initial assumption about   being a maximal matching – and it 

proves the fact that the translated active DU location set covers all components. 

On the other hand, this DU set has exactly     elements, since in the bipartite graph every edge is 

adjacent to one DU location (and one component). These altogether imply that the minimal amount of 

necessary DU locations is not more than    .  
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We also note that the inequality is tight, e.g. in the following example, a maximal size matching 

contains 2 edges (A1, B2), while a single active DU location (B) may cover all the components: 

A B C

21

 

FIGURE 19 TIGHT INEQUALITY EXAMPLE 

This first lemma ensures that the amount of necessary active DU locations is bounded from above – 

by the size of any maximal matching. The next necessary step is to find the strongest upper bound, i.e. 

the minimal size of a maximal matching. 

Lemma 2: Finding the minimal size maximal matching is NP-complete. 

Proof 2: This was proven by M. Yannakakis and F. Gavril in [70]  

It unfortunately blocks our attempts to decrease the upper bound and tighten the limits, therefore 

the best upper bound on the amount of necessary active DU locations is achieved by the size of an 

arbitrary maximal matching. 

This fact also raises a question about the deviation in size of maximal matchings: may we accidentally 

get an arbitrary maximal matching which is 100 times bigger than the minimal size? It would 

significantly weaken the upper bound. The next lemma shows that an arbitrary maximal matching is a 

2-factor approximation of the minimum size maximal matching (in any graphs): 

Lemma 3: The size of an arbitrary maximal matching gives a 2-approximation on the size of 

the minimum size maximal matching (proven by Z. Gotthilf et al., [69]).   

Corollary 3: Finding an arbitrary maximal matching leads to a valuable upper bound on the 

minimum size maximal matching, i.e. also on the amount of necessary DUs. 

This last implication shows the reason to deal with matching: it can be applied to the NTD problem. A 

fast greedy algorithm will be proposed for calculating an upper bound on the necessary amount of 

DUs, based on the notion of node criticality measure: 

Algorithm 1 Upper bound approximation for active DU locations: 

 Step 1: Create the bipartite graph G of components and DU locations as described above. 

 Step 2: Select the components with criticality value of 1, and connect them to their single 

DU; add these DUs to the solution. These undoubtedly are necessary for full coverage of 

components. 

 Step 3: Let    , and then take the unconnected components with criticality value of  . 

Assign them to an arbitrary adjacent DU location until all of them are covered. If there are 

any more unconnected components,  ++ and goto Step 3. Otherwise goto Step 4. 

 Step 4: The selected subset of DU locations is sufficient for connecting all the components, 

a valid solution is found. STOP. 
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Lemma 4: Complexity of Algorithm 1 is              

Proof 4: Individual steps of the algorithm are analyzed regarding their complexity 

The first, initial step for creating the bipartite graph is composed of three elements: 

 Criticality values are set in              steps: the Bellman-Ford algorithm is applied to 

calculate the distance between any pair of demand points and DUs, and it is compared to 

    ). The ordered lists of DUs at every node (i.e. the criticality code) are made in      

        steps, since at every node we have at most      DUs within reach. 

 Components are created in       steps, comparing all nodes pairwise, and contracting the 

ones with the same criticality code. 

 Once the components and DU locations exist, edges of the bipartite graph are added, based 

on the adjacency information in the component criticality codes, with at most       steps 

(since we have at most      components and DU locations) 

These altogether result in              complexity for Step 1. Step 2 has a complexity equal to the 

amount of components:     . Step 3 is executed at most      times, since the amount of DU 

locations bound criticality (therefore   is not increased further), and each step includes at most      

assignments:       steps for all executions. If we sum up these, we get              complexity for 

Algorithm 1.  

Summarizing this subsection: we have a polynomial time greedy algorithm for computing an upper 

bound on the amount of necessary DU locations for connecting all demand points, subject to 

distribution loop length constraints. 

4.3. LOWER BOUNDS OF DU SET 

Finding a lower bound on the amount of minimal necessary DU locations for connecting all demand 

points, with respect to distribution loop length constraints could also be a valuable addition. 

An upper bound may be used as an obvious measure of quality (if a solution is provided with more 

DU locations, it definitely may be improved). On the other hand, a lower bound is more difficult to 

interpret: a solution far from the achieved lower bound still may be of high quality if the lower bound 

is not tight. However, any solution close to a known lower bound is immediately proven to be a high 

quality result. 

Accordingly, in this section an attempt is made for a theoretic lower bound computation, and in a 

following chapter we will present a linear programming based lower bound calculation method, which 

is more of practical interest, and also shows the real power of the proposed heuristics, having a 

relatively small gap between the achieved results and the known lower bound.  

At first, a trivial lower bound is described, based on the notion of components and criticality: 

Lemma 5: The amount of components with criticality value of 1 (    ) makes a lower bound 

on the amount of necessary DUs (      ). 

Proof 5: A set of demand points forming a component with criticality value of 1, have to be 

connected to only one DU location (all of them to the same). That requires that DU location to 

be active. However, no other components with criticality value of 1 can be connected to the 

same DU location, otherwise nodes of these two components would have the same criticality 

code, and the two components should be the same.    
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Similarly, a lower bound is available based on the amount of components with criticality value of 2 

(    ): 

Lemma 6: The amount of components with criticality value of 2 (    ) provides another 

lower bound on the amount of necessary DUs (      ):  

       
  √        

 
 

Proof 6: Supposed we are given   different DU locations, the maximal amount of different 

components (with different criticality codes!) is equal to ( 
 
), since no more mutually different 

pairs of DU locations exist. Therefore: 

(
 

 
)        

               

              

And then, by solving the quadratic inequality, we get: 

  
  √        

 
 or   

  √        

 
 

Considering non-negativity of  , we get   
  √        

 
.  

The computed minimal DU locations for different      values are as follows (  rounded up to the 

closest integer): 

           

           

           

           

           

           

           

           

… … 

 

According to the fact, that typically the      values do not exceed significantly (if at all) the      

values (components with criticality 1), lower bound is typically tighter with       , except for small 

networks and just a few components. Similarly, additional lower bounds are available based on 

components with 3, 4, … criticality, but for the same reason, these have low practical value. Increasing 

criticality values and bounds is more about number theory than the graph itself. 
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5. SPECIALIZED, HIGHLY EFFICIENT HEURISTICS 

Beyond clarifying the theoretical background of algorithmic topology design for NGA networks, 

another fundamental goal of the research was to propose applicable solutions: algorithms that solve 

not only relatively small sample problem instances under “lab-conditions”, but also realistic, large-

scale scenarios, which have practical interest. 

Obviously the theoretical studies were necessary before developing algorithms, in order to decide 

whether the problem can be solved in an algorithmic way at all. The preceding sections support the 

observation that the problem is NP-complete, exact optimization expectedly cannot be carried out in 

polynomial time; moreover really tight guaranteed constant-factor approximation is beyond 

possibilities. The algorithmic analysis lead to reasonable requirements regarding time complexity 

(scalability) and accuracy of the algorithms. 

According to the introductory section, effective (likely polynomial) algorithms are required for 

sufficient scalability: an NTD problem instance solved at once is typically the service area of a single 

CO, which is in the magnitude of 1.000s to 10.000s of demand points. On the other hand, topology 

design is an offline problem, therefore several hours or even days of computation are tolerable. As we 

have seen, exact optimization has exponential complexity, which excludes practical applications, even 

with these permissive requirements. 

Regarding approximation accuracy of heuristic methods, practical applications raise the bar: 

deployment of NGA networks requires very high investment; cost-minimization planning and accurate 

cost estimation is of high importance. Therefore a high extent of suboptimality is not acceptable: even 

the theoretically existent constant factor approximations with 46% or 73% gap are too loose, if we 

consider the magnitude of investment at these network deployments. However, by terms of 

guaranteed approximation, these cannot be outperformed. 

Hence, for practical reasons, the approximability requirements will not be set for the theoretic 

“worst case” scenario, but for the average expected value of suboptimality, tested against various real-

world scenarios and case studies. Extent of the allowed optimality gap is difficult to define, and even 

more difficult to test/check, since the exact optimum is typically not known. 

As a conclusion, the requirements we set up for the topology design heuristics: 

 scalability: large-scale problems, even for graphs with 10.000+ nodes 

 accuracy: suboptimality gap within 10-20% in average 

In order to achieve such high performance approximation, highly specialized heuristic algorithms are 

necessary. According to the well-known No Free Lunch theorem [53], specialization allows effective 

approximation of well-defined problems – this was driving the efforts for identifying special cases, as 

presented in section 2.5. The heuristics should be adapted to characteristics of the problem, and 

typical input parameters of the various special cases as far as possible. 

In this section, various heuristic algorithms are proposed for special cases of the NTD problem. As a 

common feature, all of the presented heuristics are based on a decomposition of the topology design 

problem, which is introduced in the first subsection. We note here, that this section focuses on the 

three presented point-multipoint technologies, namely PON, AON and DSL. The point-to-point 

networks were important for the theoretic studies, complexity and approximability analysis, but for 

topology design, the already published algorithms for solving the Steiner-tree problem may be used 

(e.g. the Distance Network Heuristic [56], or the algorithm of Zelikovsky [59]). 
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5.1. SUBPROBLEMS AND DECOMPOSITION 

Complexity analysis not only led to the recognition of NP-completeness, but the efforts to identify 

the included NP-complete subproblems also highlighted the most critical points of the NGA Topology 

Design (NTD) problem itself. 

On an abstract level, optimization for both the general case and special cases of the problem can be 

seen as a minimum cost, point-multipoint architecture, considering various constraints, connecting 

demand points to the central office through distribution units. During the design of such topology, 

three basic questions should be answered: 

 In the point-multipoint structure, which demand points have to be connected to the same 

distribution unit? Or: which demand points should be in the same group (cluster), assigned to 

a common DU? 

 Where should be the distribution units located? 

 Which path should the connections follow between the demand points and their assigned 

DUs, and also between the DUs and the CO? 

These subproblems will be referred to as Group formulation, DU allocation and Connection 

establishment, respectively. 

In general, group formulation belongs to the class of clustering problems, with several specific 

attributes, e.g. the clustering is carried out on a graph and not in the Euclidean space, diameter of the 

clusters is bounded by network range constraints, and cardinality of the clusters is fixed due to DU 

capacity requirements. DU allocation is obviously a location problem, more specifically a capacitated 

location problem defined on a graph. Connection establishment belongs to minimum cost path and 

flow problems, complicated with a non-linear, stepwise cost function of parallel connections. 

The NTD problem will be decomposed into these subproblems; however the strong cross-

dependence of them has to be taken into consideration. Moreover, that cross-dependence is what 

makes the problem as complete as it is: 

 Group formulation strongly affects DU allocation: once the group of demand points is defined, 

DU allocation reduces to the problem of finding a “centroid” of that group. Therefore a confuse 

clustering with scattered groups by itself makes “nice” DU allocation impossible, not to mention 

its effect on the connection establishment, which is intended to minimize the sum of demand 

point-DU distances. 

 DU allocation, together with the DU-demand point assignment (i.e. group formulation) almost 

completely determines the optimal connection establishment in the distribution network 

segment. Hence the optimal distribution network is treated rather as the objective function for 

the DU allocation, than as an independent optimization step later. 

Therefore these problems cannot be solved independently, one after another. In every distinct phase 

and subproblem, the further steps have to be reflected in the objective. Including later phases into the 

optimality conditions for any of the subproblems lies in the heart of the heuristics presented in this 

section. 
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FIGURE 20 DECOMPOSITION OF THE NGA TOPOLOGY DESIGN PROBLEM 

5.2. SPECIALIZATION 

The optimization problem has its objective (cost function) that differentiates between a “good” and a 

“bad” solution; and its constraints that differentiate between valid and invalid solutions. The already 

discussed special cases have in general the same formulation, but the significance or typical values of 

these cost factors or constraints make the difference between them [37]. 

The most important difference between the specific heuristics is the different approach for the 

subproblems driven by these typical values. Therefore at first we briefly review the cost factors and 

constraints, and highlight the effect of different typical values.   

COST FACTORS 

DU costs (   ): high distribution unit costs require maximal DU utilization, therefore all the   

capacity of them has to be fulfilled. Especially for large   values, it enforces large distribution unit 

segments. In contrary, DU costs substantially lower than cable plant costs result in simpler distribution 

unit segments, i.e. small star topologies around the DUs. 

The subproblem of formulating groups of demand points around distribution units may be 

interpreted as a graph clustering problem, with a significant specialty: the cluster sizes are bounded 

from above by the   capacity value. The higher the DU costs are, the closer the cluster sizes should be 

to this   value. The problem of making almost equal-size segments makes a significant difference 

between traditional clustering problems, and the group formulation subproblem. 

Deployment costs (  ): High deployment costs have a well noticeable effect on the optimal 

solution. Minimizing length of the traces above fiber lengths leads to a clear Steiner-tree problem, as it 

was discussed at the complexity studies. 

Fiber costs (  ): Fiber costs, in contrary to deployment costs enforce topologies more like a 

shortest path tree instead of Steiner trees, where all nodes are connected to the CO along their 

shortest paths, even if it increases overall trace length. 

Access network topologies typically have a tree structure, but these two cost factors make the 

difference between the two extremities, i.e. trace minimizing Steiner trees, or distance minimizing 

shortest path trees. 

•Clustering 
problem for 
demand point 
groups 

Group 
formulation 

•Location 
problem of 
distribution units 

DU allocation 
•Path/flow 

problem 

Connection 
establishment 
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CONSTRAINTS 

DU capacity ( ): The effect of DU capacity is not independent from the DU costs, but high DU cost 

makes the capacity constraints significant. High capacity DUs result in really wide groups and long 

distribution network segments, that may conflict with distance limitations (see below), and also 

increases cable plant costs. 

On the other hand, low DU capacities lead to really small demand point groups. If the DU capacity is 

not a magnitude higher than the typical building size, an additional bin packing problem arises, since 

granularity issues make filling DUs difficult. As an extreme example, splitter with capacity for 64 

demand points may be utilized only at around 50% with buildings having 33 demand points. 

Network range (    ): This constraint has a straightforward consequence on the graph. The 

network range is the diameter of the feasible network topology around the CO; any demand points 

outside this region are excluded from the valid solutions. 

Feeder network range (     
   ): The shorter the feeder network segments are constrained, the 

closer the DUs are to the CO. As an extremity, point-multipoint topologies become point-to-point 

topologies with zero length feeder network segments, however assuming short feeder, and long 

distribution network range is not realistic. 

Distribution network range (     
   ): As the most interesting and complicated element of the 

constraint set, the distribution network range, and its consequences were investigated earlier: Section 

Hiba! A hivatkozási forrás nem található. was dedicated to this topic, resulting in the notion of 

criticality, and a bouquet of valuable observations for short distribution network segment constraints. 

These are built in the heuristics for DSL networks. 

5.3. PASSIVE OPTICAL NETWORKS (PON)  

In the case of passive optical networks, we have relatively permissive distance limitations: typically 

(far) more than   demand points are within      
    distance from the DU locations. The DU capacity 

constraints are also not decisive: due to the reasonable price of passive equipment, capacity of a 

splitting point may be easily increased by adding DU equipment at the same location. Therefore none 

of the constraints has dominating effect on the solution space. 

On the other hand, this special case has a complex objective function: both the DU and the 

distribution network costs are considered, resulting in a “duplex” function, where the weights assigned 

to these cost factors (   ) determine optimal solutions: 

   {                          }      {  {∑    [  (  )   ]

   

}     } 

The developed heuristic therefore aims at a joint optimization of distribution fiber and distribution 

unit costs, avoiding two extremities, namely (1) when the DU costs are minimized hence the DUs are 

completely filled, even if distant demand points are assigned to the DU, significantly increasing 

distribution network costs, and (2) when the distribution fiber lengths are minimized, even if it 

requires a distinct DU allocated for every single demand point. 

The reason for using a point-multipoint architecture (e.g. PON networks) is the fiber saving achieved 

in the feeder network segment, where a single fiber carries the traffic from the   demand points 

connected to the DU. The proposed Branch Contracting Algorithm (BCA) in the group formulation 



| Specialized, highly efficient heuristics 57 

 

phase aims at maximizing these savings. It is achieved by collecting “neighboring” demand points that 

share a large portion of their path towards the CO (Figure 21). 

5.3.1. DESCRIPTION OF THE BRANCH CONTRACTING ALGORITHM (BCA) 

All of the proposed heuristic algorithms will be described with a step-by-step description and a 

flowchart. Moreover, a sequence of figures extends the description of the branch contracting 

algorithm for PON network, showing the concept of group formulation by path sharing maximization 

(starting with Figure 21). 

Algorithm: Branch Contracting Algorithm (BCA) 

 Step 1 (Initialization): Construct a tree T in the graph based on the shortest paths between 

the demand points and the CO. It may be easily seen that this subgraph is a tree [60]. 

 

FIGURE 21 SHORTEST PATH TREE 

 Step 2 (Group formulation):   denotes the amount of not connected demand points in the 

tree. Start from the farthest demand point on this tree   from the CO, and move from node to 

node up the tree, towards the CO as its root. If the amount of demand points in the current 

subtree exceeds a predefined threshold  , stop moving up. A new demand point group is 

formed of the demand points in the subtree, i.e. a branch is cut from the tree, contracting its 

nodes to a group (this step is reflected in the name of the heuristic). Remove these nodes 

from the set of unconnected demand points (  decreased). The threshold Q is typically a 

function of DU capacity  , controlling the DU utilization rate. Repeat Step 2 until any 

unconnected demand point exists (   ). Figure 22 illustrates the process: the red curved 

arrow points to the root of the subtree, while the bright blue areas indicate members of the 

subtree. The upward move process terminates when the subtree is large enough, and the dark 

blue area shows the final group borders. 
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FIGURE 22 GROUP FORMULATION IN BCA 

 Step 3 (DU allocation): For every group formulated as described in Step 2, find the best DU 

location, minimizing the sum of distribution network cost. The available DU locations within 

the boundary of group are evaluated by summarizing lengths of paths to all demand points of 

the group, by using the Bellman-Ford algorithm. The location with minimal summarized 

distance is chosen as the DU location for the group. 

 

 

FIGURE 23 DU ALLOCATION AND CONNECTION ESTABLISHMENT 

 Step 4 (Connection establishment): The demand points should be connected to the assigned 

DUs via their shortest paths, while connecting the DUs to the CO is a more complicated 

process. Due to the stepwise behavior of the cable plant costs in the feeder network, 

minimization of the sum of C0 costs plays an important role. In order to use the minimal 

necessary set of links for the feeder network, the problem becomes similar to the Steiner-tree 
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problem. With small modifications, we use a generally accepted approximation of the 

originally NP-complete problem, the so-called Distance Network Heuristic (DNH, [56]) for 

designing the feeder network. 
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FIGURE 24 FLOWCHART OF THE BRANCH CONTRACTING ALGORITHM (BCA) 

5.3.2. COMPLEXITY 

Lemma 5.1: The presented BCA algorithm works with time complexity of              

Proof 5.1:  

Preliminary assumptions (these stand for all other algorithms in this section): 

 The graph models a map, therefore the maximal degree of a node is bounded from above: a 

crossing of two streets is a node with degree of 4. Therefore, the amount of network links 

(graph edges) is  bounded by (           ) times the amount of nodes, i.e.           

 The amount of DU locations is also proportional to the amount of nodes (i.e. to the population 

/ graph size):           

 For ease of notation, during the complexity analysis here, we use   instead of     

Based on these assumptions, steps 1-4 of the BCA algorithm will be analyzed, in order to identify 

their complexity. 

 Step 1: During the initialization phase, the shortest path tree has to be built and the subtree 

information has to be stored 

o Shortest path tree: the Bellman-Ford algorithm runs in        time. After that, 

along all the demand point-CO shortest paths, the edges have to be added to the 

tree, in at most        steps. While adding the edges to the tree, and proceeding 

on the paths towards the CO, the demand points are stored at all intermediate nodes 

in the subtree lists. 

o The subtree lists have to be ordered by the distance of demand points from the root 

node of the subtree, that needs at most             steps. 

 Step 2: The group formulation is composed of two basic operations, in an iterative manner: 

o In order to find the next branch to cut, the furthest leaf has to be found, which needs 

     steps due to the Bellman-Ford algorithm already executed at the initialization 

phase. It is followed by upward moves, in at most      steps, towards the CO, and 
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finally, once the root of the subtree is found, the “deepest”   demand points are 

selected, in linear time, since the subtree lists are ordered. 

o The branch cut operation requires a refresh operation at all the nodes along the path 

from the subtree root to the CO. Deletion of the   nodes from the ordered subtree 

lists is done in linear time at every node, resulting in        operations. 

 Step 3: The DU allocation runs in      steps: the sum of distance values have to be 

compared among all DU locations, while the distance values are already known due to the 

Bellman-Ford algorithm in the initialization phase. 

 Step 4: Finally, the feeder network is constructed as a Steiner-tree either with the basic 

Distance Network Heuristic that runs in              time, or with the slightly more 

accurate algorithm of Zelikovsky that runs in       time, providing the best known 

approximation with a constant factor of 1.55. 

Steps 1, 3 and 4 run only once, while the Step 2 has to be executed for every group,      times. 

Therefore, the overall complexity of the BCA algorithm, if the DNH heuristic is used to build the 

Steiner-tree is: 

       (       )                                 

If the algorithm of Zelikovsky is chosen to build the Steiner-tree of the feeder network, the BCA 

algorithm inherits its       complexity.   

5.3.3. APPROXIMATION PERFORMANCE 

Factor of guaranteed approximation for the PON topology design problem is really complex to derive, 

since the problem itself is a composition of different problems, with varying weights of different cost 

factors. 

The weights themselves are parameters of the proposed heuristic algorithm as well: the predefined 

threshold   for the minimal amount of demand points served by a DU has to reflect the significance of 

DU costs versus the cable plant costs. The capacitated facility location (CFL) problem as an underlying 

problem has a worst-case approximation factor of 2. 

Since this worst-case approximation factor is far from the expected quality of results for practical 

scenarios, the approximation performance evaluation is focused on average/expected approximation, 

presented in the numerical results section, via evaluation of case studies, comparing heuristic results 

against Linear Programming lower bounds.  
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5.4. ACTIVE OPTICAL NETWORKS (AON) 

Active Optical Networks (AON) have their own specific features, in some aspects similar, but from 

other aspects, contradictory to the already discussed Passive Optical Networks (PON) and Digital 

Subscriber Line (DSL) networks. Distance limitations are fairly permissive, similarly to PONs, and the 

DUs are active, complex and expensive equipment, similar to DSL networks. The high DU costs make 

the AON problem primarily a clustering problem with permissive capacity and length constraints.  

A minimal set of groups/clusters is in demand, minimizing the necessary amount of DU equipment. 

At the same time, a clear structure of DU-demand point assignments ensure low cabling costs. 

Therefore the resulting topologies are expected to be more “regular”, regarding the size and shape of 

clusters, in order to avoid overlapping of neighboring groups. 

 

FIGURE 25 VORONOI-DIAGRAM 

The concept of Voronoi-diagrams has to be mentioned here. In general, a Voronoi diagram is a 

decomposition of points in a given space, according to a set of “sites”. Every point in the space is 

assigned to the closest one of these sites, and the points assigned to the same site form a Voronoi cell. 

In our case, the Voronoi-diagram is interpreted on the graph, with the DUs as its “sites”, while the cells 

are the demand point clusters (groups) around the DUs, even though the DU capacity constraints will 

slightly distort this ideal structure. 

The Iterative Neighbor Contracting Algorithm (INCA) tries to create such a balanced structure of 

demand point clusters and DU locations, using a bottom-up clustering technique: as an initial step, all 

demand points are assigned to their closest DU location. In the subsequent steps, these clusters are 

contracted with their neighbors, in order to match DU capacities, and achieve high utilization of DU 

equipment. 

5.4.1. DESCRIPTION OF THE ALGORITHM 

The flowchart of the algorithm is depicted on Figure 26, while the step-by-step description of the 

algorithm is given below. 

Algorithm: Iterative Neighbor Contracting Algorithm (INCA) 

 Step 1 (Initialization): Given a list of available DU locations, assign every demand point to the 

closest one (resulting in a Voronoi-diagram around the DU locations). The groups of demand 



62 Specialized, highly efficient heuristics |  

 

points assigned to these locations form a non-overlapping coverage, however the groups may 

be smaller/larger than the desired DU utilization.  

 Step 2a (Pre-filtering): The desired minimal utilization of a DU equipment is  , which is 

typically a function of the DU capacity  . For every DU location with more than   demand 

points assigned, allocate a DU, and assign the closest   demand points to it. Remove these 

from the subsequent calculations, but the residing demand points will be handled later. Step 

2a is repeated until no DU locations exist with more than   demand points. 

 Step 2b (Aggregation): Let    denote the set of clusters containing less demand points than 

the threshold  . Find a pair of neighboring groups in  . Merge these groups, and as the 

cluster center, use the DU location with the smaller summarized distance from the contracted 

group members (closer to the “centroid” of the group). Repeat this step until any 

“undersized” group exists, i.e.      . 

 Step 3 (Connection establishment): The distribution network between the DU and the 

assigned demand points follows their shortest paths. The feeder network is relatively sparse, 

therefore designed as a Steiner-tree (with the CO and the DUs as its terminals). This Steiner-

tree is constructed using the DNH heuristic, similar to the feeder segment of PON networks. 
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NO

YES Merge

 

FIGURE 26 FLOWCHART OF THE ITERATIVE NEIGHBOR CONTRACTING ALGORITHM (INCA) 

5.4.2. COMPLEXITY 

Lemma 5.2: The presented INCA algorithm works with time complexity of              

Proof 5.2: Based on the preliminary assumptions described at PON networks, Steps 1-3 of the 

INCA algorithm will be analyzed, in order to calculate their complexity: 

 For Step 1, the Voronoi-diagrams have to be created. To assign demand points to their closest 

DU location, a single execution of the Bellman-Ford algorithm is necessary that runs in 

       time, and then, for every node, the DU location has to be selected with minimal 

distance value, that requires        steps. In total, Step 1 needs       operations. 

 By a more detailed resolution of Step 2: 

o The DU locations with more than   demand points have to be found and realized. 

Finding these needs     , while in order to assign exactly the closest   to the new 

DU, these have to be ordered ( (         ) , and then the deletion of the 

connected nodes can be done in linear time. In total, this happens in  (         ) 

time. 
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o For contracting DUs: 

 The closest neighbor of the chosen DU can be found by a DFS search on 

       time, and for choosing the centroid of the new group, distance 

values from the Bellman-Ford algorithm have to summed up and compared, 

in linear time. 

 The actual DU and group contract operation runs in        time, since all 

the affected nodes have to be assigned to their closest available DU, that 

means a simple comparison of all DUs for every node. And there are no more 

than    affected nodes, since the two contracted groups had less than   

members. 

 Finally, the Steiner-tree problem of the feeder network can be solved by any of the following 

two algorithms: the basic Distance Network Heuristic runs in              time, while the 

slightly more complex algorithm of Zelikovsky runs in       time. 

Steps 1 and 3 are to be run only once, while the operations of Step 2 are used in an iterative manner, 

in a worst case scenario      times. Therefore, the overall complexity of the INCA heuristic, if the 

DNH heuristic is used to build the Steiner-tree is: 

          [                   ]                            

If the algorithm of Zelikovsky is chosen, the INCA heuristic inherits its       complexity.   

5.4.3. APPROXIMATION PERFORMANCE 

Any guaranteed approximation factor is again very difficult to prove, similar to PON networks. The 

clustering problem itself contains the capacitated p-median problem (CPMP), supposed that the 

amount of DUs is fixed (   
 ⁄ ). For the CPMP problem,    

 ⁄  is the best known approximation 

factor in the literature, and anything better than    
 ⁄        is impossible. 

Both of these worst-case approximation factors are far from the expected quality of results for 

practical scenarios, therefore, regarding approximation performance, we refer to the numerical results 

and evaluation of case studies, comparing heuristic results against Linear Programming lower bounds 

(Section 7). 

5.5. DIGITAL SUBSCRIBER LINE (DSL) NETWORKS 

DSL networks with fiber feeder segment have a very special feature, which makes them different 

from the completely optical access network types addressed in the study. The re-use of the legacy 

copper network makes the distribution network cost negligible, at least in comparison with the fiber 

deployment required by the other technologies. Therefore the cable plant cost reduces to the feeder 

network segment. At the same time, the physical constraints on the distribution network segment play 

fundamental role: the copper network is strongly limited by the attenuation characteristics of the 

copper itself. 

The Distribution Unit (DU) costs are significant: the network equipment, on the boundary of the 

optical feeder and the copper distribution network are expensive. On the other hand, DU capacity 

constraints do not have significant effect: typically the DU capacity itself is higher than the amount of 

demand points within the range of the DU due to the limited copper loop length, i.e. not the DU 

capacities themselves; rather the copper loop length constraints play an important role. Moreover, the 

incurring DU costs are more related to the amount of active DU locations and not the equipment itself, 
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since the capacity of a distribution unit is typically expandable by additional cards with moderate 

increase in price. Therefore, the optimization problem formulation allows the minimization of the DU 

equipment or the active DU locations either: in the latter case, the DU capacity constraints ( ) should 

be relaxed (i.e. set to infinity). These altogether define a special “coverage” problem, in which a 

minimal amount of DU locations are sought, “covering” all the demand points, i.e. every demand point 

has a DU located within     
     distance.  

5.5.1. DESCRIPTION OF THE STEPWISE ALLOCATION OF CRITICAL DUS (SACD) ALGORITHM 

Flowchart of the algorithm may be followed on Figure 27, and the step-by-step description is given 

below. 

Algorithm: Stepwise Allocation of Critical DUs (SACD) 

 Step 1 (Initialization): Place a virtual DU to all available locations. Assign all demand points 

within      
    distance to the virtual DU (one demand point may be assigned to multiple virtual 

DUs). Compute criticality values, and perform the lexicographical criticality ordering of DUs. 

 Step 2 (DU allocation #1): If any virtual DU exists with more assigned demand points then a 

predefined threshold  , choose the most critical, with respect to the ordering defined above. 

The value of   is a function of the DU capacity ( ), controlling the desired initial utilization 

rate. Allocate a single DU at the chosen position, covering the   most critical demand points in 

the respective demand point list, and remove these   demand points from the graph, and 

from all other virtual DUs). Repeat this step until virtual DUs exist with at least   demand 

points, otherwise go to the next step. 

 Step 3 (DU allocation #2): If no more virtual DUs exist with at least   demand points, choose 

the one with the highest utilization, and repeat this step until unconnected demand points 

exist, or until a predefined utilization lower bound is reached. We note that if the amount of 

active DU locations is minimized instead of DU equipment (   ), Step 3 will be skipped. 

 Step 4 (Connection establishment): The copper network between the DU and the demand 

points is shortest path based (and a priori defined by the existing and re-used copper 

network). As we have described it for PON networks, the DNH heuristic will be used to 

construct the Steiner-tree of the feeder network. 
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FIGURE 27 FLOWCHART OF THE STEPWISE ALLOCATION OF CRITICAL DUS (SACD) ALGORITHM 
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5.5.2. COMPLEXITY 

Lemma 5.3: The presented SACD algorithm works with time complexity of              

Proof 5.3: Based on the preliminary assumptions described at PON networks, steps 1-4 of the 

SACD algorithms will be analyzed, regarding their complexity: 

 By summing up the above described tasks, Step 1 needs  (          ) steps: 

o Assigning demand points to all DU locations within reach: in order to make this 

assignment, an execution of the Bellman-Ford algorithm is necessary that runs in 

       time. With respect to our initial assumptions, it is equal to      . 

o Compute node criticality values: for every node-DU location pair a length-check has to 

be carried out, based on the distance values obtained from the Bellman-Ford 

algorithm:              . 

o Lexicographical ordering of DUs: at first, the nodes assigned to a DU location have to 

be ordered in increasing order by their criticality values, that needs  (         ) 

steps per DU,  (          )  (          ) in total. Finally, the DUs themselves 

require a lexicographical ordering, based on their (already ordered) node-lists, that 

needs  (         ) steps, i.e.  (         ) according to our initial assumptions. 

 Choosing the next position for DU allocation (Step 2) runs in      time, due to the 

lexicographical ordering. 

 The DU allocation itself (Step 3) needs at the deletion of at most   points from all other 

virtual DUs in        time, and a reordering of the DUs in  (         ) steps. The demand 

point lists of DUs remain ordered after the deletion. By summarizing these, Step 3 needs 

                                        steps. 

 Step 4: For building the Steiner-tree of the feeder network, two heuristics can be used. The 

simpler Distance Network Heuristic runs in              time, while the Zelikovsky 

algorithm runs in       time, providing the best known approximation factor of 1.55. 

Steps 1 and 4 are to be run only once, while Steps 2 and 3 are used in an iterative manner, at most 

     times. Therefore the overall complexity of the SACD algorithm, if the DNH heuristic is used to 

build the Steiner-tree is: 

 (          )      [          ]                            

If the algorithm of Zelikovsky is chosen, the SACD algorithm inherits its       complexity.   

5.5.3. APPROXIMATION PERFORMANCE 

In Section 4.2 it was proven that the criticality based greedy algorithm provides a 2-approximation of 

the minimal amount of necessary DU locations for a full coverage of demand points. Therefore the 

SACD algorithm provides a 2-approximation in this sense. However, we can take a little step forward, 

and evaluate the approximation of the minimal amount of DU equipment, with respect to the DU 

capacity ( ) constraints. 

Lemma 5.4: Provided that the given maximal matching is of minimal size, the above described 

algorithm yields to a maximal “additional” 2-approximation inaccuracy of the problem, 

regarding the amount of DU units used. 
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Proof 5.4: This suboptimality occurs when the amount of demand points assigned to the DU location 

leads to an “underutilization” of the DU equipment. The worst case scenario is then the lowest 

possible utilization of DU equipment on the necessary DU locations, i.e. the case when the    

distribution units are just not sufficient to connect the demand points assigned to the respective DU 

location. More formally, the situation when        demand points are connected to every active 

    location, requiring      DUs there. It is important to see that the since the DU location is active 

in the optimal solution, at least one DU has to be assigned there (     ). Suboptimality occurs when 

multiple DUs are located there. 

Assuming   active DU locations, the total amount of demand points is as follows: 

  ∑        
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 (1) 

These demand points require a minimum of  ∑   DUs, regardless of the actual position of them. 

However, due to the        demand points assigned to each location  , the amount of DUs in total 

will be: 
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The proportion of the minimum necessary and actually deployed DUs, according to (1) and (2): 
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Therefore in a worst case scenario the amount of DUs actually deployed is two times the minimal 

necessary amount of DUs.  

Corollary 5.4: The criticality based greedy algorithm leads to a 2-approximation of the 

necessary active DU locations. The amount of active DU locations is a 2-approximation of the 

necessary DU equipment. These altogether prove the fact that the greedy SACD algorithm 

provides in a worst-case scenario a 4-approximation on the minimal amount of DU 

equipment, and a 2-approximation of the DU locations.  
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6. EXACT OPTIMIZATION AND METAHEURISTICS  

The heuristic solutions proposed in the previous section are highly specialized algorithms, intended 

to provide high quality approximate results, within reasonable time constraints. In this section, two 

totally different reference methods are presented: (1) a mathematical programming approach, used to 

find the optimality gap, i.e. the distance between the heuristic solutions and the exact optimum, and 

(2) Simulated Annealing, a general (meta)heuristic approach, which will be used to evaluate the 

scalability of the highly specialized heuristics.  

THE OPTIMALITY GAP 

The already presented algorithms are heuristics, so we need to know how far they are from the 

optimum: approximation quality is a primary question. In the first subsection, we will make an effort 

towards exact optimization, in order to evaluate the gap between the heuristic solutions and the 

optimum. Through several improvements steps, including linearization and relaxation/decomposition 

techniques, a linear programming formulation will be derived, which provides a lower bound of the 

optimum, even for relatively large problem instances. 

Such a lower bound then contributes to the initial question: the gap between the heuristic solutions 

and the optimum. Supposed that we have a lower bound, i.e. a cost value even lower than the 

optimum (     ). The heuristic solution is higher than the optimum (     ), i.e. the optimality 

gap is  . In such a case, the     distance bounds the optimality gap from above, and this     

distance will be available even if the optimum itself remains unknown. 

α β

Lower bound (LP) Optimum (ILP) Heuristic solution

 

FIGURE 28 BOUNDING THE OPTIMALITY GAP 

SPECIALIZATION GAIN 

Estimating the optimality gap tells the price of using heuristic approaches instead of exact 

optimization. Unfortunately, exact optimization is beyond possibilities, as our complexity results have 

shown. Supposed that an acceptable optimality gap is obtainable, heuristic approaches provide a 

reasonable solution. However, finding the right heuristic solution is not straightforward. The proposed 

solutions rely on the specific problem characteristics, i.e. the special cases presented in Section 2.5. As 

it was discussed in the respective sections, accurate identification of these special cases determines 

the efficiency of the heuristics (see No Free Lunch Theorem [53]). 

A large set of generally adopted metaheuristic approaches exist in the literature, e.g. Random 

Optimization [75], Genetic Algorithm [76], Simulated Annealing [77], Tabu Search [78], and several 

nature inspired algorithms: Ant Colony Optimization [79] or the  Firefly Algorithm [80] are nice 

examples for learning from the nature. Many of them were investigated regarding their applicability 

for the NGA Topology Design (NTD) problem [38], and we found the Simulated Annealing (SA) [77] a 

well suitable approximation scheme. In the second subsection, a Simulated Annealing scheme is 

developed and adapted to the NTD problem. 

These will serve as a “benchmark” general heuristic algorithm for performance evaluation of all 

presented, highly specialized heuristics, considering both approximation quality and scalability, while 

the numerical evaluation and the case studies will be presented in the next section. 
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6.1. MATHEMATICAL PROGRAMMING 

In this section, the mathematical programming formulation is introduced, beginning with the initial 

Quadratic Programming (QP) formulation, and then improved through various steps towards a 

computationally tractable, Linear Programming (LP) formula. 

6.1.1. QUADRATIC PROGRAMMING (QP) FORMULATION 

We recall Section 0, where the formal model of the NGA Topology Design problem was introduced, 

and the optimization problem formulated. The problem in its most straightforward representation is a 

quadratic programming (QP) problem. 

Formally, we are given a network graph        , consisting of edges   and nodes   representing 

the traces/paths, along which a network link could be built, the set of available DU locations 

  {   }    and the set of demand points   {  }   . 

The optimization tends to minimize the topology dependent cost of network deployment. All the 

edges     have a nonnegative length     , a cable deployment cost       and fiber cost      . 

These costs are typically but not necessarily proportional to the length of the link, and the cost reflects 

the different cabling technologies and existing infrastructure conditions. The cost of deploying a 

distribution unit (DU) is    
 . 

CONSTANTS 

           Cost of cable deployment on link   

           Cost of fiber on link   

          Length of link   

    
  Cost of Distribution Unit (DU)s 

   Capacity of DU units 

VARIABLES: 

            
        

Indicator of the demand point-DU location assignment, value is 1 
only if the demand point   is connected to DU location  . 

          The amount of DUs at location  . 

            
        

Indicator of edge   on the path between demand point   and its 
assigned DU location (Distribution network) 

            
 
       

Indicator of edge   on the path between     and the CO (Feeder 

network) 

          
Number of connections over edge   in the feeder and in the 
distribution networks altogether 

        {   } Indicator variable for existence of edge e either in the feeder or 
in the distribution network segments 

   Total amount of DUs deployed in the network 
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OBJECTIVE: 
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CONSTRAINTS: 

(1)      ∑  
 

   

   

(2)      ∑  
 

   

      

(3)           ∑   
 

    

 ∑   
 

    

 {
  

             

                 
                  

 

(4)           ∑   
 

    

 ∑   
 

    

 {

                 

                    
              

 

(5)      ∑        
 

    

 ∑(  
  ∑        

 

   

)

   

      

(5a)      ∑       
 

   

     
     

(5b)      ∑(  
  ∑        

 

   

)

   

     
    

 

(6)           ∑  
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(7)                    

(8)    ∑  

   

 

Constraints (1) ensure that every demand point is served by exactly one DU, (2) represents the 

capacity constraints for DUs: the amount of demand points connected to a DU location is bounded 

from above by the summarized total capacity of the DUs located at the given location. The flow 

conservation (Kirchhoff) constraints (3) and (4) keep the flow from splitting. These ensure that every 

demand point has a dedicated unitary flow towards its DU (distribution network), and every DU 

locations are connected to the CO by a flow of    units (feeder network). Constraints (5), (5a) and (5b) 

provide the network reach (distance) limits for the overall, feeder and distribution network segments, 

respectively. We note that constraints (5) and (5b) make the formulation quadratic. Finally, constraints 

(6), (7) and (8) provide the auxiliary data for the cost function: the      installed capacity values for 

every link, the indicator variable for link deployment and the amount of DUs. 

We introduce some basic assumptions for calculating the                         dimensions of 

the formulation: 
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 for the sake of simplicity, in this section we use   instead of     ,   instead of     , etc. during 

the problem dimension calculations 

 the amount of edges ( ) and nodes ( ) is in the same order of magnitude:       . This 

initial assumption is supported by the fact that our graph represents the map (street system) 

of a given service area, at which the nodes are degree-constrained: most of them have exactly 

two adjacent edges, and street crossings typically have a degree of four 

 the amount of DU locations and demand points is proportional to the number of nodes: 

       

This Quadratic Programming (QP) formulation has the following dimensions: 

VARIABLE SET DIMENSIONS 

                                                 

                 [           ]                           

CONSTRAINT SET DIMENSIONS 

                                  

                                                        

                    

In summary, dimensions of QP: 

                                    

 

6.1.2. MIXED INTEGER PROGRAMMING (MIP) FORMULATION 

Linearization of the quadratic length constraints (5,5b) of QP is possible: both   and   are binary 

variables, therefore their product is the AND operation of Boolean algebra. A new variable   is 

introduced, and by two constraints,       is enforced, as follows: 

      {
      

        
 

In our case, the new variable will be: 

                  
   

       Indicator of edge e being on the path between     

and the    if demand point   is assigned to     (Feeder 

network!) 

Constraints (5) and (5b) are substituted by (A1)-(A4) as follows: 

(A1)      ∑  
 

   

 ∑∑  
   

      

      

(A2)      ∑∑  
   

      

     
    

 

(A3)                  
    

 
     

   
 

(A4)                     
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 (A3)-(A4) ensures that   
   

   
    

 
, and then (5) is transformed to (A1): 

∑   
 

    

 ∑(  
  ∑   

 

    

)

   

 ∑   
 

    

 ∑ ∑   
    

 

       

 ∑   
 

    

 ∑ ∑   
   

       

      

Similarly, (A3)-(A4) ensures that   
   

   
    

 
, and then (5b) is transformed to (A2) 

∑(  
  ∑  

 

   

)

   

 ∑∑  
    

 

      

 ∑∑  
   

      

     
    

 

Unfortunately, the problem dimensions are increased with this linearization. Both the variable and 

the constraint sets became   times larger, i.e. the problem dimensions are multiplied by   : 

VARIABLE SET DIMENSIONS 

                                          

CONSTRAINT SET DIMENSIONS 

                                       

                                    

In summary, dimensions of LP: 

                                       

 

6.1.3. AGGREGATED FLOWS: A REDUCED LINEAR PROGRAMMING FORMULATION 

Linearization of the originally quadratic problem was a significant step forward; even if the further 

increased dimensions, namely the       variables and       constraints results in a really challenging 

problem size: an                 size matrix representation of the problem even for a graph of 

10 nodes - an enormous matrix with approximately one million elements, for a pretty small graph. 

Therefore, the problem has to be reduced in size, without losing its linearity.  

In this section, a new LP formulation is introduced, which is based on the aggregation of the distinct 

network segments into a single feeder and distribution network flow problem, respectively: 

 the feeder network flow originates from the CO as its source, and terminates in the DU 

locations as its sinks, serving every DU location with a flow of    units, i.e. one unit per 

distribution unit 

 the distribution network flow originates from the DU locations as its sources, and terminates 

at the demand points as its sinks, serving every demand point with a flow of 1 unit 

These flow problems are not independent: the DUs are treated as sinks of the feeder flow and 

sources of the distribution flow, while the traffic terminating in the feeder flow gives a bound on the 

traffic originating in the distribution flow, according to DU capacity constraints. 

Such an aggregated flow problem hides the individual connections, hence the access network 

topology cannot be derived from it, but it gives a lower bound on the optimal value of the cost 

function: if the original topology design problem has a solution with cost  , it is also a solution for the 

flow problem with the same cost  , even though the flow problem may have a solution with even 

lower cost. 
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FIGURE 29 AGGREGATED MIP: THE FLOW PROBLEM 

The length constraints are relaxed in this         formulation: the individual connections are not 

traceable, therefore their lengths are not considered. Problem complexity is further reduced by taking 

the linear relaxation of the problem: the flow integrality constraints are relaxed. In the aggregated 

flow formulation, integrality does not prevent flow splitting anyway: the variables stand only for the 

sum of distinct flows, not for the individual flows themselves. 

According to the above described concept, the linear programming formulation for aggregated flows 

is as follows: 

VARIABLES 

          Feeder network flow over edge   

          Distribution network flow over edge   

          The amount of DUs at location   

        {   } Indicator variable for edge e either in the feeder or the 
distribution network flows 

   Total amount of DUs 

OBJECTIVE 

                    
  ∑[                      ]

 

 

CONSTRAINTS 

(1)      ∑   

    

 ∑   

    

 {
               
                

 

(2)      ∑   
    

 ∑   
    

{
                               

                   
 

(3)                     

(4)    ∑  
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Constraints (1) and (2) are the flow conservation constraints for the feeder and distribution network 

flows, respectively, while (3) and (4) sets the auxiliary variables for the cost function: the indicator 

values   , and the amount of DUs. We note that the value of   , i.e. the amount of DUs deployed at 

location   is implicitly constrained by (2): the DUs must “absorb” the flow originated from the demand 

points in  , then these    values are acting as a lower bound on the feeder network flow, which is 

forced towards its minimum by the cost functions. 

This aggregated linear programming formulation has the following dimensions: 

VARIABLE SET DIMENSIONS 

   (       )                      

CONSTRAINT SET DIMENSIONS 

   (       )                       

In summary, dimensions of        : 

   (       )            

This way we have constructed a mixed integer, linear formulation with significantly lower 

dimensions. Obviously, this formulation does not solve the original problem directly, it rather gives a 

lower bound. However, even a lower bound was extremely difficult to find, which makes this         

formulation a valuable addition – as we will see at the validation and evaluation section later. 

6.1.4. OVERVIEW OF MATHEMATICAL PROGRAMMING FORMULATIONS 

The formulations presented in this section are compared and summarized in Table 4. The initial 

Quadratic Programming (  ) formulation was the direct formal interpretation of the topology design 

problem, as it was described in Section 0. The following Integer Linear Programming formulation (   ) 

was the linearization of QP, with the same conditions, solution space and optimum. The complexity 

challenges were then addressed by an aggregated MIP formulation (       ), which has significantly 

lower dimensions. 

Even if the latter, aggregated MIP formulation gives only a lower bound on the optimum instead of 

an exact solution, it was implemented and applied for evaluation, due to the heavy complexity 

challenge the topology design problem poses. The significantly lower dimension, linearization and the 

linear relaxation of the majority of its variables altogether made the         mathematical 

programming approach scalable enough, at least for mid-size problem instances (see Section 7 for 

numerical results). 

TABLE 4 OVERVIEW OF MATHEMATICAL PROGRAMMING FORMULATIONS 

Formulation Problem type Dimensions Features 

   Quadratic, Integer             Exact optimization 

    Linear, Integer             Exact optimization with linearization 

        Linear, Mixed 
Integer 

         Reduced complexity, linearization, linear 
relaxation 
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6.2. METAHEURISTICS 

Several metaheuristic approaches and optimization strategies are known in the literature, e.g. 

genetic algorithms, tabu search, branch and bound methods, hill climbing or even the greedy 

algorithm. Many of these methods have been investigated, considering their applicability for the NGA 

Topology Design problem [38]. Simulated Annealing turned out to be the most promising alternative, 

among others due to its scalability, the ability to avoid local optima, and the possibility to influence the 

convergence speed by the temperature function [38]. It does not require numerous problem/solution 

instances (like e.g. Genetic Algorithm), neither enormous amount of visited previous states (like e.g. 

Tabu Search) to store. 

In contrary to mathematical programming, Simulated Annealing does not provide exact optimum. On 

one hand, it will be used as a “benchmark” for the proposed heuristic algorithms. However, on the 

other hand, it is not used only as a benchmark, but the really flexible parameter-setting features of SA 

make it a promising alternative for general applications, with future technologies or under unknown 

circumstances, where the highly specialized heuristics suffer performance degradation. Therefore the 

Simulated Annealing approach is a significant part of the proposed algorithm set. 

6.2.1. SIMULATED ANNEALING 

The concept of Simulated Annealing comes from metallurgy: the metal is heated at first, and then the 

molten metal material goes through a controlled cooling process. The initial high temperature causes 

the atoms to move dynamically around their initial position, letting them to reach a minimum energy 

state later. With decreasing temperature this motion is also reduced, and finally stopped: the atoms 

get stuck to their position in the crystal structure. 

The cooling process ensures convergence of the simulated annealing, while the high temperature 

range helps to avoid local minima, by allowing state transitions through lower and higher energy 

states. Allowing moves toward higher energy states (which is a “backward” step in a minimization 

process) is the most important feature of SA.  

The flowchart of a general Simulated Annealing process is given on Figure 30. 

START
Set initial state (S0)
& Temperature (T)

Generate Neigbor 
State (S1)

→ cost difference: Δc

Better then 
original?

Accept new 
state

Update 
temperature

Generate 
random R

d(Δc,T) < R ?

YES

NO
YES

NO

Terminate?

NO

END YES

 

FIGURE 30 FLOWCHART OF THE SIMULATED ANNEALING (SA) PROCESS 
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6.2.2. SIMULATED ANNEALING FOR THE NGA TOPOLOGY DESIGN PROBLEM 

Applying a SA scheme is not a straightforward process. SA itself just gives a strategy, but it needs 

customization and adaptation to the addressed optimization problem. This adaptation itself makes the 

difference between highly effective and totally useless applications of SA. 

Namely, the following features have to be defined: 

 cooling (temperature control) strategy 

 neighbor state generation 

 state evaluation 

 decision function 

 initial state generation 

 termination 

STATE EVALUATION 

During the SA process, we will mostly concentrate on the set of Distribution Units (DUs). Assuming an 

a priori given DU allocation (including the amount and location of DUs), the network topology is 

relatively easily derived, in the following steps: 

 Step 1: We recall the notion of Voronoi diagrams. As an initial step, we assign all demand 

points to their closest DU. 

 Step 2: In order to fulfill capacity constraints, this assignment is refined. For DUs with more 

than   demand points (“overloaded” DUs), the closest   demand points will be assigned to 

the DU, while the rest remain unconnected. Obviously, if   DUs are located at the same 

location, the closest     demand points will be assigned to them. 

 Step 3: After filling these “overloaded” DUs, the remaining demand points will be connected 

to the remaining DUs having spare capacity. 

Based on the assignment procedure a network topology is created with respect to the given DU 

allocation, for which the cable/fiber costs will be calculated, and added to the cost of the DU units. The 

resulting overall cost will be used for state evaluation and comparison. 

NEIGHBOR STATE SELECTION 

Convergence and scalability is mostly influenced by neighbor state selection, therefore it is probably 

the most important part of the SA adaptation. It should support the process to walk effectively across 

the solution space: the amount of necessary steps between the two most distant states defines the 

“diameter” of the solution space. 

We propose a neighbor state selection method based on the amount and location of DUs. A neighbor 

state is a network topology, which is created via modification of the current topology by any of the 

following operations: 

 ADD: Add a new DU to the current solution by assigning it to one of the available DU 

locations. The new DU location may be randomly selected, or in order to speed up 

convergence, it may be influenced by distribution of demand points: the new DU should be 

located with higher probability in a region where overloaded DUs exist. 

 DELETE: Remove a DU from the current solution. A DU may be randomly chosen for deletion, 

or it may be again influenced by the distribution of demand points: a DU should be removed 
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with higher probability from a region where underutilized DUs exist (with significantly less 

than   demand points assigned). 

 MOVE: Move a DU from its location to a neighboring DU place, in geometric sense: the 

closest available DU location in the graph is selected. We note that this operation can be 

interpreted as a combination of an ADD and a DELETE operation of DUs. 

The neighbor state is the result of a random choice among these operations. Combined with the 

demand point assignment process described at the state evaluation, adding a DU splits oversized 

groups, deleting a DU contracts undersized groups, while movement slightly rearranges the affected 

groups. At initial, high temperatures, multiple DUs may be involved in these operations, i.e. multiple 

DUs may be added, removed or moved in a single step, in order to speed up the convergence. This 

extension helps to reduce the effect of a possibly incorrect initial state, being far from the optimum. 

The amount of necessary DUs in an optimal solution is typically close to   ⁄ , i.e. the population per 

DU capacity ratio. The diameter of the solution space is the maximum of necessary steps to move from 

one solution to another one. With the above described neighbor states, removing all DUs of solution 

  , and adding all DUs of solution    requires approximately     ⁄  steps, therefore the diameter of 

the solution space is proportional to that amount: 

      
 

 
 

In a typical PON network scenario, with a few thousand demand points (       ), and 1:64 splitting 

ratio (    ), diameter of the solution space is in the magnitude of 100 steps. 

TEMPERATURE CONTROL 

The temperature controls the probability of a “backward” step during the minimization process, 

which increases overall cost. It lies in the heart of Simulated Annealing, prevents it from being stuck in 

a local minimum. The schedule and rate of temperature reductions give a tradeoff between quality of 

the solution and scalability, i.e. the convergence speed. Typically processes with faster convergence 

may stop earlier, with higher probability in a local minimum, while slower processes have a higher 

probability to reach a global optimum (or at least a “better” local minimum). Figure 31 shows an 

example for this phenomenon (“Kecel” case study, VDSL network design). 

 

FIGURE 31 CONVERGENCE SPEED VS. OPTIMALITY 
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The temperature should obviously decrease monotonically. Here I have chosen an exponentially 

decreasing function from        , multiplying it by an constant       in every loop, which leads 

to a fast decrease in the beginning, and slower process at the end, around the presumed optimum 

(Figure 32).  

DECISION FUNCTION 

If the evaluated neighbor state (  ) is better (has lower cost) than the actual state (  ), the SA 

accepts it, and takes the step towards   . However, even if    has higher cost (i.e. it is a worse state), 

a probabilistic decision is made, which allows move to   . This probabilistic decision is controlled by 

the temperature. For every decision, a random number ( ) is chosen, and compared to a predefined 

decision function   of the temperature ( ) and the difference between the cost of    and   , i.e.  

              : 

                                     

Therefore, the temperature decreasing strategy, and also the decision function has to be determined. 

Decision function   is monotonic in  : with decreasing temperature, the probability of a “backward” 

step is also decreased. When applying SA for the topology design problem, the following decision 

function was used: 

 
   

           

Here        is a scaling factor for compensating the difference between the price and temperature 

values, which can differ by several orders of magnitude. 

INITIAL STATE GENERATION 

For any iterative heuristic approach, choosing the right initial state has significant impact on 

convergence speed and quality of results. In the case of the NTD problem, and the above discussed 

realization of SA, the DUs play central role. Namely, the amount and the location of distribution units 

must be determined at the initial state. 

As a “naïve” approach, the initial DU allocation follows the distribution of demand points. An optimal 

DU allocation that allows maximal utilization of DUs requires     ⁄  distribution units; therefore the 

algorithm will start with 20% more, i.e.         ⁄  DUs, in order to allow a “random walk” in the 

solution space at the beginning. 

For the initial allocation of these DUs, a weighted random selection is applied among the available 

DU locations ( ). The weights of the respective available DU locations reflect the local demand point 

density, i.e. the amount of demand points within an   radius of the given DU location. 

TERMINATION 

The iterative process needs an “exit condition”, which stops the process. For this realization of SA, I 

have added two terminating conditions. The Simulated Annealing process stops: 

 when T falls below     

 if the cost remains unchanged for a sufficiently long period of time, i.e. no neighbor states are 

accepted for a number of iterations 
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PARAMETER SETUP 

The decision function and the temperature control strategy together controls the “dynamics” of the 

SA process. Fine tuning its parameters has key importance. In the realization of SA which is described 

in this section, the parameters were set in a way that keeps the decision “alive” throughout the 

cooling process. On Figure 32 everything is put together: the temperature decrease, the probability of 

an ADD/DELETE and a MOVE state transition. These state transition probabilities have a “slow start” 

curve, which supports the initial steps across the solution space, in order to avoid local optima. The 

convergence speed is increased during the SA process. The ADD/DELETE transitions have a more 

pronounced effect on the topology, while a MOVE operation causes just moderate changes, therefore 

the latter has higher probability of acceptance: it is more like a fine-tuning step. Since an ADD/DELETE 

operation typically results in higher cost increase/decrease than just moving a DU, different        

scaling factors are assigned to them. The curves are controlled via the above described parameters, 

namely  ,   and       : 

 with a lower initial   values, the “slow start” phase gets shorter, while higher initial 

temperature makes it longer 

 the        scaling factor affects the height of the curves: higher        values result in higher 

acceptance probabilities 

 the   temperature decrease coefficient affects the number of iterations: the closer it is to 

   , the more iterations we get 

 

FIGURE 32 SIMULATED ANNEALING PROCESS DYNAMICS 

In this subsection I have proposed a metaheuristic solution, which meets the requirements and 

specifications of the addressed NTD problem; the distinct “building blocks” were designed to provide a 

reasonable search for the optimum over the solution space. This way we got a universal heuristic 

approach, which looks for an optimal solution within the domain of valid topologies “independently”: 

in contrary to the earlier presented, highly efficient heuristics, it is not intended to follow the network 

designers’ way of thinking. For this reason, SA will be a valuable “benchmark” for evaluation, and a 

universal approach to solve any future NTD problems which do not fit any of the presented special 

cases. 
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7. NUMERICAL RESULTS: VALIDATION AND EVALUATION 

In this section, the proposed methods and algorithms are evaluated thoroughly. In the first section, 

the algorithms are validated with problem instances which have a regular structure. Therefore, the 

optimum can be calculated analytically. Results of the heuristics are then compared to that optimum. 

7.1. VALIDATION: CALCULATIONS ON GRID TOPOLOGY 

For validation, a regular graph structure is needed which allows analytic calculation of the optimal 

solution. Therefore grid topologies were used, since these are able to model a regular street system. 

Figure 33 is an example grid topology. Such grid topologies will be defined by four parameters: 

  : amount of squares along one side of the grid, i.e. the grid has     squares,       

      street crossings 

  : length of the edges of each square, i.e. the complete grid is     wide 

  : the amount of demand points on a single side of an edge in the grid, with equal distance 

between their respective drop points and the street crossings 

  : length of the drop cable connecting the end points to the streets, i.e. edges of the grid 

(0,0) (1,0) (2,0) (3,0)(-1,0)(-2,0)(-3,0)

(0,1) (1,1) (2,1) (3,1)(-1,1)(-2,1)(-3,1)

(0,2) (1,2) (2,2) (3,2)(-1,2)(-2,2)(-3,2)

(0,3) (1,3) (2,3) (3,3)(-1,3)(-2,3)(-3,3)

(0,-1) (1,-1) (2,-1) (3,-1)(-1,-1)(-2,-1)(-3,-1)

(0,-2) (1,-2) (2,-2) (3,-2)(-1,-2)(-2,-2)(-3,-2)

(0,-3) (1,-3) (2,-3) (3,-3)(-1,-3)(-2,-3)(-3,-3)

Length=1+3

8x8 Grid

N = 8
L = 100 m
k = 4
d = 10 m

N=8

L = 100

 

FIGURE 33 GRID TOPOLOGY (N=8, L=100, K=4, D=10) 

The amount of demand points ( ) is expressed with these parameters. The “neighboring zone” of a 

street crossing is shown on Figure 33 by the colored circle: these are the demand points which have 

the center of the circle as their closest street crossing. There are    demand points along a street 

segment (  on both sides), half of which belong to the same “neighboring zone”. Summarizing the four 

directions,    demand points fall into every zone, and there are        street crossings: 

            (A) 
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7.1.1. OPTIMAL SOLUTION: ANALYTIC CALCULATIONS 

Our intention is to define a scenario at which we can easily calculate the optimal solution. Assuming 

that the street crossings are the available DU locations ( ), a proper setting of the DU capacity allows 

all demand points to be connected to their closest DU location (street crossing), minimizing the  

distribution fiber (DF) usage. The    demand points within the neighboring zone have to be served by 

one or multiple DUs, therefore the DU capacity has to be a divisor of   : 

  
  

 
 (B) 

With this setup, in an optimal topology the DUs will be located at the street crossings, exactly   at 

each location. Components of the network deployment cost for the optimal topology will be calculated 

in the following paragraphs. 

DISTRIBUTION UNITS 

The minimal necessary amount of DU units is given by dividing the amount of demand points by the 

DU capacity, according to (A) and (B): 

     
 

 
 

         

  
 

          (1) 

DISTRIBUTION FIBER (DF) 

Figure 34 shows the “neighboring zone” of a DU location: the fiber usage connecting all these 

demand points to the DU location at the street crossing will be calculated now. Assuming   demand 

points on a single edge of the grid, the distance between neighboring drop points (indicated by   on 

Figure 34) is expressed by the parameters of the grid: 
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FIGURE 34 DISTRIBUTION FIBER IN THE GRID 

 



| Numerical results: Validation and Evaluation 81 

 

Then it is easy to see that we have to connect   ⁄  demand points on each side of every edge 

adjacent to the street crossing. These drop points have              
 

 
    distance from the DU 

location. The distribution fiber for a single DU region is the sum of the four directions, and two sides 

per direction, therefore: 

                
 

 
       ∑   

 
 ⁄

   

     ∑ 

 
 ⁄

   

     

 
  (
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The drop fiber is ignored here, since the drop fiber usage is independent of the topology 

optimization; it would only add a constant   for all demand points. 

In total, we are given        street crossings, therefore the total distribution fiber length in the 

network with this setup is: 

∑            
       

   
 (2) 

FEEDER FIBER (FF) 

In this regular setup,   DUs are located at every street crossing. The minimum necessary amount of 

feeder fiber will be then   times the sum of distances between DU locations and the CO, which should 

be in a central position (see Figure 33 again). The distance between every DU location and the CO is 

equal to   times the sum of the absolute value of its “coordinates”, taking the CO as the origin      . 

The x and y coordinates are then easy to read from the figure. In the middle line, the y coordinates 

are equally 0. In the first lines below and above, we have y coordinates equally 1, and so on – until the 

bottom and top of the grid, i.e. the  
 

 
   th lines, and in every line we have     points. If we sum 

up just the x coordinates at first, we get: 

∑          (      
 

 
  )          ∑  

 
 
  

   

         
(
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Obviously ∑  ∑ . If we have   DUs at each DU location, the feeder fiber usage is   
times the sum of x and y coordinates, i. e. ∑      ∑  ∑      ∑ : 

 

∑     
             

 
 (3) 
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DEPLOYMENT COSTS 

The minimal necessary cable deployment defines a subgraph, i.e. a subset of network links that 

preserves connectivity. It has to be a minimal set: removing any more links from the network makes it 

unconnected. A minimal, connected graph is a tree, by definition. 

Clearly, the drop cables connecting the demand points to the street are necessary, otherwise the 

demand points would be disconnected from the network, i.e. there is no reason to minimize the drop 

cables. Therefore, here we will concentrate on links of the street system, in order to find a minimal 

connected set of them. 

On every edge of the street system grid between two street crossings, at most one small segment   

may be removed from the graph. Otherwise, there will be an endpoint between the two removed 

segments, being disconnected from both neighboring street crossings, therefore, unreachable from 

any DU locations (e.g. the four central demand points on Figure 35): 

s s s s sX X
DU DU

 

FIGURE 35 CONNECTIVITY OF DEMAND POINTS 

The feeder network should connect all DUs to the CO, i.e. connectivity of the street system grid is 

necessary. Now if we take a look at the original graph (Figure 36), we can divide it in two different 

regions. The external region is on the boundary of the grid. Here, outside of the last demand point, 
 

 
   small segments are unnecessary on every external edge (bold, red segments on the figure). In 

the internal region, the street system should remain connected. In an     grid we have       

      street crossings. A tree connecting        nodes contains          edges, therefore 

         edges of the feeder network must remain intact. The remaining edges of the street 

system are not required for the feeder network, however due to the distribution network connectivity, 

not more than one segment   may be removed from each of them, as we have seen earlier.  

Internal 
region

External
region

1 2 ... N

1
2
...
k

 

FIGURE 36 MINIMAL DEPLOYMENT CALCULATIONS 
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We get minimal network deployment (DP) by subtracting these two “savings” from the complete 

street system length, i.e. segments removed in the internal and external regions: 

∑                     
      

           
      

 

The complete street system length is easy to sum up: the graph contains       “streets” both 

horizontally and vertically with length of    : 

                    

The external region savings are the bold red segments on Figure 36. According to the above findings, 

there are 
 

 
   unnecessary small segments at the “external end” of those     street system edges 

in all four directions: 

          
      

           (
 

 
  )          

 

   
 
   

 
           

   

   
 

In the internal region, there are in total               edges of the street system. In order to 

maintain connectivity of the feeder tree,          of them have to remain intact (as it was 

explained above). On the rest of the street edges, one small segment   per each edge is unnecessary. 

Therefore, the internal region savings are: 
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In summary, the minimal cable deployment: 
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Finally we get for the minimal deployment: 

∑   
 

   
 [              ] (4) 

Equations (1)-(4) give the optimal value for the amount of DUs, feeder and distribution fiber usage, 

and cable deployment, respectively. 
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7.1.2. EXAMPLE GRIDS 

A set of different regular grid structures were chosen for the validation of the heuristic algorithms. 

The main parameters of these grid networks are concluded in Table 5. The table also contains the 

calculated dimensions of the optimal network topology, according to the formulas of the previous 

section. 

TABLE 5 GRID NETWORKS FOR VALIDATION 

Parameters Grid types 

Name 4x4 8x8 8x8 dense 8x8 dense+ 16x16 16x16 dense 16x16 dense+ 

  4 8 8 8 16 16 16 

  100 100 200 1000 100 200 1000 

  4 4 16 64 4 16 64 

  10 10 10 10 10 10 10 

  16 16 16 16 16 16 16 

  1 1 4 16 1 4 16 

Demand 
points 

144 784 3136 12544 3600 14400 57600 

Optimal solution 

Deployment 1 600 8 800 19 012 97 231 40 480 87 341 446 523 

Feeder Fiber 1 200 16 800 134 400 2 688 000 168 000 1 344 000 26 880 000 

Distribution Fiber 4 320 23 520 166 024 3 184 246 108 000 762 353 14 621 538 

Distribution Units 9 49 196 784 225 900 3 600 

 

7.1.3. NUMERICAL RESULTS 

Three completely different heuristic approaches were presented for three different types of Next 

Generation Access network technologies, namely Passive Optical Networks (PON), Active Optical 

Networks (AON) and Digital Subscriber Line (DSL) networks. First of all, we recall Section 5.2 about the 

specialization of the heuristics. For these three network types, the various cost factors are represented 

in the total cost with different weights, and the given physical constraints are also significantly 

different for each network type. 

During the validation, these three heuristics, namely the Branch Contracting Algorithm (BCA), the 

Iterative Neighbor Contracting Algorithm (INCA) and the algorithm for Stepwise Allocation of Critical 

DUs (SACD) were applied for optimizing PON, AON and DSL network topologies on the grids, 

respectively. The calculated total costs are normalized: the analytically calculated optimum is used as 

100.0%, the heuristic results are compared to it, showing the cost surplus, i.e. the difference from the 

optimum. 

Starting with PON networks, Figure 37 shows a comparison of total cost: for the “densely populated” 

grids the heuristic has almost optimal results, but even the “worst case” 4x4 grid leads to only 3,6% 

higher cost than the optimum, which is surprisingly good from a really fast heuristic algorithm. 
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FIGURE 37 VALIDATION OF THE BCA HEURISTIC ON GRIDS: TOTAL COST 

The total cost figures may hide the details, therefore on the following figures we look behind the 

curtain. Figure 38 shows the weight (contribution) of distinct cost factors to the total cost: the fiber 

costs are clearly dominated by the build and equipment costs. Figure 39 shows a comparison of 

distinct cost components of the heuristic solution to that of the optimal topology. 

 

FIGURE 38 COST COMPONENT WEIGHTS (GPON ON GRIDS) 

On Figure 40, these differences are weighted by their contribution to the total cost. We can observe 

that in the lowest density 8x8 grid, there is a somewhat significant difference in distribution fiber 

costs, while at the two other 8x8 grids with higher density of demand points, the distribution network 

is optimal (and we have observed the same phenomenon with 16x16 grids). 

The reason is a tricky artifact or “side-effect” of the highly regular grid structure (Figure 41): if the 

heuristic creates a group which is not identical to the optimal “neighboring   zone” (see Section 7.1.1), 

it automatically creates a malformed neighboring group. An example is the bottom-right group on the 

figure: four of its demand points should have been connected to its left neighbor street crossing. 

Because of these four points, the neighboring group will be similarly malformed, and this irregularity 
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propagates from group to group, all across the gird. Fortunately, with real-life scenarios, or even with 

more demand points and DUS within the same “neighboring zone”, this side-effect becomes negligible 

(see “8x8 dense”, and “8x8 dense+” grid results on Figure 39). 

 

FIGURE 39 PON HEURISTIC VS. OPT – DETAILS I. 

 

FIGURE 40 PON HEURISTIC VS. OPT – DETAILS II. 

 

FIGURE 41 GRID STRUCTURE SIDE-EFFECT 
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If we investigate the INCA heuristic for AON (Figure 42 & Figure 43) and SACD heuristic for DSL 

networks, we get even better results: the heuristics produce network topologies almost identical to 

the optimal solution, both in terms of total cost and every component of the total cost. 

 

FIGURE 42 VALIDATION OF THE INCA HEURISTIC ON GRIDS 

 

FIGURE 43 VALIDATION OF THE SACD HEURISTIC ON GRIDS 

As a conclusion, on these regular grid structures the proposed heuristics performed well, having a 

very moderate or even no difference from the optimum at all. In the next section, the heuristics will be 

evaluated on large scale real world scenarios.  
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7.2. EVALUATION 

The proposed heuristic algorithms will be evaluated against realistic scenarios in terms of 

approximation performance and scalability. Now we are not facing artificial problems with regular 

structures; hence we immediately lose the ability to calculate the optimum. At this point, we turn to 

the reference methods presented in Section 6. Here we recall the figure from Section 6: 

α β

Lower bound Optimum
Specialized

heuristic

Simulated

Annealing

γ 

 

FIGURE 44 REFERENCE POINTS FOR EVALUATION 

The optimal solution is the minimal cost network that serves all the demand points with the given 

constraints. The Integer Programming solution provides a lower bound on it, with a cost lower by   

than the optimum (see Section 6.1.3 for details). The Simulated Annealing provides an approximation 

of the optimum, with   distance from it, while the proposed, specialized heuristics will approximate 

the optimum by  . What makes evaluation difficult is the fact that we do not know the optimum itself. 

Therefore, we can only prove that the heuristic solution does not exceed the optimum higher than 

    – this will be the way to evaluate accuracy of the heuristics. 

The case studies will be presented in Section 7.2.1. Section 7.2.2 presents the evaluation of “solution 

quality”, i.e. the ability of the heuristics to approximate the optimum. Section 7.2.3 is devoted to 

scalability aspects: resource requirements, namely running time and memory consumption of the 

presented methods.  

7.2.1. CASE STUDIES 

A set of reference areas were chosen for evaluation purposes; these will be presented in the first 

subsection. The proposed methodology for topology design of Next Generation Access (NGA) 

networks has four main input data: (1) the map, i.e. graph of the street system, (2) location of demand 

points, i.e. buildings and demand points, and (3) existing infrastructure information defines the 

reference area itself, while (4) the cost database and the physical constraints derived from technology 

specifications complete the scenario (Figure 45). 

 

FIGURE 45 INPUT DATA FOR A CASE STUDY 
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For the presented case studies, the digital maps were derived from the publicly available 

OpenStreetMap database [81], and the demand point data from the Hungarian Statistical Institute. 

Table 6 concludes the main geographic characteristics of the chosen scenarios. The topology design 

methodology is part of our AccessPlan Framework (see later), which applies a detailed and well-

structured cost database. However, the cost data is confidential information, therefore not published 

in details, but we can reveal the “aggregate” cost parameters used for the topology optimization 

process (Table 7). The technology specifications used throughout the case study evaluations are based 

on international standards for Gigabit Passive Optical Network (GPON, [9]), Active Ethernet (AETH, 

[15]) and Very High Bitrate DSL (VDSL, [18]) access networks (Table 8). The infrastructure information 

and the cost databases for the case studies are from joint projects with industrial partners, therefore 

these are not publicly available.  

TABLE 6 SCENARIOS / CASE STUDIES 

SCENARIO NAME KŐSZEG KECEL SOLYMÁR SASHEGY ÚJPALOTA 

Type 
Small city 

central 

Countryside 
town 

Agglo-
meration 

Suburban Urban 

Area (km2) 0,5 7,21 4,42 5,89 1,18 

Buildings 367 3 071 2 134 1 080 1 080 

Demand points 367 3 165 2 714 4 366 6 994 

Avg. demand points / 
building 

1,00 1,03 1,27 4,04 6,48 

Buildings / km2 730 430 480 180 920 

Demand points / km2 730 440 610 740 5 930 

Graph nodes 1 075 6 712 4 783 11 205 2 265 

Graph edges 1 104 6 850 4 846 8 040 2 319 

Street system length 18 040 97 858 55 703 152 556 26 660 

TABLE 7 COST PARAMETERS 

Access 
Network 

Technology 

Distribution 
Unit 
Cost 

Cable plant costs (  : cable deployment,   : fiber costs) [HUF/m] 

New 
trenching 

Re-use of 
existing 

substructure 

New aerial 
cable 

Re-use of existing 
aerial cabling 

Re-use 
copper 
cable 

                           

GPON 150 000 8000 10 600 10 4000 10 800 10 - 

AETH 4 000 000 8000 10 600 10 4000 10 800 10 - 

VDSL 3 000 000 8000 10 600 10 4000 10 800 10 5 
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TABLE 8 TECHNOLOGY SPECIFICATIONS AND PHYISICAL CONSTRAINTS 

Network technology 
Network range (segments) Distribution unit 

capacity Feeder Distribution 

GPON                    

AETH     
    

              
                   

VDSL     
    

              
                

 

The first scenario is the central area of a countryside city (“Kőszeg”), which is the smallest case study, 

used mainly for test and visual verification, assigning exactly one demand point per building (i.e. FTTB 

architecture). The second case study is a complete countryside town (“Kecel”), mainly with single 

family houses (i.e. one demand point per building). The third area (“Solymár”) is located in the 

agglomeration of Budapest, the capital of Hungary. It has slightly different settlement structure, but 

the majority of the buildings is still owned by a single family. The last two scenarios are from Budapest: 

one “suburban” region, with a mix of different building types, containing also “empty” areas of a 

cemetery and a small nature reservation area, therefore it has a low population density in average 

(“Sashegy”). The last area is from the densely populated urban region of Budapest, typically with large 

apartment houses (“Újpalota”): this one has the highest number of demand points among the five 

different reference areas. 

 
FIGURE 46 KŐSZEG MAP 

 
FIGURE 47 KECEL MAP 
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FIGURE 48 SOLYMÁR MAP 

 
FIGURE 49 SASHEGY MAP 

 
FIGURE 50 ÚJPALOTA MAP 

7.2.2. APPROXIMATION PERFORMANCE 

This section is devoted to evaluation of the solution quality, i.e. ability of the presented methods to 

minimize cost function of the NGA Topology Design (NTD) problem. Once we leave the “lab 

conditions”, evaluation and interpretation of the results becomes complex and sometimes not easy to 

understand. In this subsection, the proposed highly efficient heuristics presented in Section 5 are 

compared to the Mixed Integer Programming (MIP, Section 6.1) lower bound, in order to evaluate the 

quality of approximation, i.e. the gap between the heuristic solution and the optimum.  

 MIXED INTEGER PROGRAMMING (MIP) RESULTS 7.2.2.1.

Results of the MIP formulation need some little explanation. Any MIP solver, during its operation, 

maintains an upper and a lower bound. In a cost minimization problem, the upper bound is the best 

known feasible, integral solution. The assumed optimal solution is somewhere between the upper and 

lower bounds, therefore the MIP solver tries to converge them. For large-scale, highly complex 

problems, the resource constraints may not allow the solver to achieve the exact optimal solution, 
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therefore it returns the best known optimal solution, and the gap between these bounds, which adds 

some kind of uncertainty to the achieved results. 

The MIP solver was used with settings that enforce faster upper bound convergence, i.e. finding the 

best known feasible integral solution. Two examples are shown here: Figure 51 presents an MIP solver 

process, in which the lower and upper bounds converge in approximately 15 minutes, therefore the 

MIP problem was solved successfully. The difference between upper and lower bound convergence 

speed may be observed also: the upper bound quickly approaches the optimal solution (in approx. 100 

seconds), while the lower bound increases slower. Figure 52 shows a more complex optimization 

process: after 72 hours of computation, there is still more than 20% gap between the upper and lower 

bounds, even if the best known integral solution was found in the very beginning of the process. 

This phenomenon was observed for all of the presented MIP results: whenever the calculations were 

terminated due to time or memory constraints, the upper bounds had been unchanged for a long 

time, i.e. the best known feasible solution was found quickly in the beginning of the process, and then 

the solver spent most of the time with the lower bound improvement. 

 
FIGURE 51 MIP LOWER AND UPPER BOUND DYNAMICS #1 

 
FIGURE 52 MIP LOWER AND UPPER BOUND DYNAMICS #2 

The MIP results were carried out by using the most powerful MIP solver on the market: ILOG CPLEX, 

now developed by IBM (version 12.2). Specifications of the computer running the calculations are 

summarized in Table 9 – we just have to emphasize that CPLEX 12 supports parallelization, therefore 

all CPU cores were used during the calculations. 

In the following subsections, all heuristics will be compared to MIP results. Which MIP results cannot 

be treated as optimal results for the original topology design problem, but they give a lower bound of 

it. Due to the simplified, relaxed reformulation of the complex quadratic problem, the MIP formulation 

may lead to even lower cost results, since the length constraints are relaxed. Therefore the distance 

between heuristic and MIP results is an upper bound on the distance between heuristic results and the 

optimum. 
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TABLE 9 CPLEX & COMPUTER SPECIFICATIONS 

CPU Intel Core i5 2500K 

CPU speed 3.3 GHz 

CPU cores 4 

RAM 8 GB 

CPLEX version 12.2 

CPLEX search tree size 500 GB 

 

 BCA HEURISTIC FOR PASSIVE OPTICAL NETWORKS 7.2.2.2.

The total cost of the network deployment is the first and foremost aspect of evaluation and 

comparison. On Figure 53, the BCA heuristic results and the MIP lower bounds are depicted as a pair of 

columns for all presented case studies. The results are normalized such that MIP lower bound is 100% 

in any case. The results show that the Branch Contracting Algorithm (BCA heuristic, Section 5.3) 

provides an approximation of the MIP solution within 11.2% for all scenarios, and since the MIP 

solution is not the optimum but a lower bound, BCA may approximate the optimum even more. 

The second pair of columns requires further explanation: in the “Kecel” scenario, the BCA heuristic 

outperforms MIP, which is normally not possible. The reason is the extreme complexity of even a 

simplified MIP formulation, and “Kecel” is the scenario with the highest number of buildings, i.e. 

demand point locations. The MIP solver has found a valid solution after 3 minutes, while it had 60% 

relative gap. After 24 hours of parallel calculations on four CPU cores this gap was still 57%. In the 

meantime, BCA has finished in 34 seconds on one CPU core, and provided better results, falling “within 

the gap” between upper and lower bounds of MIP. This notably scalability gain of BCA heuristic 

explains the results for the “Kecel” scenario. 

 

FIGURE 53 TOTAL COST OF GPON NETWORKS: BCA HEURISTIC VS. MIP LOWER BOUND 
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The aggregated total cost may hide differences in various components of the cost function, especially 

for components with lower weight. Which is in fact correct: the BCA algorithm was designed in a way 

that it preferably minimizes cost factors with higher weight. The contribution of the various factors to 

the total cost in a typical PON scenario is drawn on Figure 54. The distribution unit and distribution 

fiber costs are more or less balanced, both play an important role – this differentiates between PON 

networks, and AON/DSL networks. Build costs have the highest contribution: this is typical for an 

access network deployment. On the other hand, build costs are less dependent on network design 

than fiber or DU costs, since build costs are more predictable: optical cables will be deployed along all 

the streets where demand points exist. The amount of DUs and optical fiber is more dependent on the 

structure of network, i.e. clustering of demand point groups. Therefore on Figure 55, the more variant 

cost factors are depcicted, i.e. the equipment and fiber cost for the five different scenarios. 

 
FIGURE 54 GPON COST COMPONENTS I. 

 
FIGURE 55 GPON COST COMPONENTS II. 

Figure 56 and the following figures depict an in-depth comparison of the results, showing only a 

moderate difference between various components for MIP and BCA. It is not surprising: according to 

the cost breakdown figures, both fiber and equipment costs have a non-negligible weight, and it does 

not allow a significant sub-optimality in any cost component, i.e. none of them could be preferred over 

the other. As we will see, it makes the difference between PON, and the following AON/DSL networks. 

Concluding these results, the BCA heuristic has proven its ability to approximate the optimum within a 

reasonable 10% range, both in terms of total cost and significant cost factors. 

 

FIGURE 56 COMPARISON OF VARIOUS COST COMPONENTS: MIP VS. BCA HEURISTIC I. FOR GPON NETWORKS (SOLYMÁR) 
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FIGURE 57 COMPARISON OF VARIOUS COST COMPONENTS: MIP VS. BCA HEURISTIC FOR GPON NETWORKS II. 

 INCA HEURISTIC FOR ACTIVE OPTICAL NETWORKS 7.2.2.3.

The Iterative Neighbor Contracting Algorithm (INCA, Section 5.4) is compared to the MIP results, as 

we did for BCA heuristic earlier. The total cost comparison is depicted on Figure 58. The difference 

between the INCA heuristic results and the MIP lower bound values are between 3.5% - 7.4%, while it 

may be even closer to the exact optimum. It opens promising possibilities for practical applications. 

 

FIGURE 58 TOTAL COST OF AETH NETWORKS: INCA HEURISTIC VS. MIP 
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Besides total cost comparison, the different cost components were also investigated: the total cost 

summary may hide interesting details. First of all we see the weight of various cost factors on Figure 

59. As expected, lower population density increases the weight of fiber plant costs, while in urban and 

suburban scenarios (“Sashegy” and “Újpalota”, the last two columns) equipment costs are more 

significant. Within fiber plant costs, build costs are dominating over fiber costs, especially over the 

feeder fiber costs, which are almost negligible. 

 

FIGURE 59 COST COMPONENT WEIGHTS FOR AETH NETWORKS 

Figure 60 and Figure 61 shows cost component comparison of INCA and MIP. Fiber costs are 

dominated by equipment and build costs, in these two cost factors a significant difference has visible 

effect on the total cost. INCA closely approximates MIP for both of these cost components (and also 

the fiber costs), which leads to high quality approximation of the total cost as well. We have to note 

that INCA performs well both with lower and higher population density scenarios, i.e. for 

Solymár/Kecel where build costs dominate over DU costs, and Sashegy/Újpalota, where DU costs are 

more emphasized. The adaptation to different scenarios is an attractive ability of the INCA heuristic: 

such a multi-faceted optimization algorithm should not only focus on a single cost component (e.g. 

build costs or DU costs), but also on an arbitrary weighted combination of these. 

 

FIGURE 60 COMPARISON OF VARIOUS COST COMPONENTS: MIP VS. INCA HEURISTIC FOR AETH NETWORKS  I. (KŐSZEG) 
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FIGURE 61 COMPARISON OF VARIOUS COST COMPONENTS: MIP VS. INCA HEURISTIC FOR AETH NETWORKS  II. 

 

FIGURE 62 INCA VS. MIP: EXCESS COST BY DISTINCT COMPONENTS 
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Figure 62 is a more complex figure: the difference between e.g. build cost results of MIP and INCA are 

weighted by their contribution to the total cost, and this relative addition to the cost is depicted on the 

figure. For example if the build cost has 25% weight in the total cost, and INCA build costs are 10% 

higher than MIP build costs, it means 2,5% cost surplus with respect to total cost. Now we recall Figure 

58: the last, urban scenario of “Újpalota” had a MIP vs. INCA difference of 7.2%. Now, if we take a look 

at Figure 62, we find the reason: the equipment costs are responsible for 5.4% out of that 7.2%. 

However, this 5.4% is the largest difference value in the table, which is still acceptable: the scalable 

INCA heuristic causes not more than 5.4% excess cost (relative to the total network deploy cost) in any 

cost components, i.e. build, fiber or equipment costs. 

 SACD HEURISTIC FOR DSL NETWORKS 7.2.2.4.

Evaluation of the Stepwise Allocation of Critical DUs (SACD, Section 5.5) heuristic begins with the 

comparison of total cost figures versus the MIP lower bound (Figure 63). Even if for one scenario, 

namely for Solymár we can observe an “above average” 15% difference between the MIP lower bound 

and the heuristic results, it is still close in the acceptable range – and for the other four scenarios we 

got even more promising results (0.2% - 6.8%). 

 

FIGURE 63 TOTAL COST OF VDSL NETWORKS: SACD HEURISTIC VS. MIP 

While the total cost values are similar, if we look at the details, namely the distinct cost components 

of the MIP and SACD solutions (Figure 64 and Figure 65), we can observe a more significant difference 

(see e.g. the build and DU costs for the “Kecel” scenario). The SACD heuristic, and the MIP approach 

leads slightly different results: during the minimization process: what is save by SACD on build costs 

was saved by MIP on the DU costs. 

Even if we did not see such difference between heuristic and MIP results for PON and AON networks 

earlier, the SACD heuristic still provides a high quality approximation in the total cost. The DSL 

topology design problem had the most complex and tight constraint set due to the copper network 

reach limitations. However, the simplified MIP formulation for lower bound calculations has relaxed 

the length constraints, i.e. it may lead to “invalid topologies”, where demand points are assigned to 

DUs falling outside of the copper network range. It may be the reason for SACD and MIP leading to 
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different topologies and different split of the total costs among the distinct cost factors. The relaxation 

of length constraints also explains the fact that we did not see that difference for PON/AON networks, 

where length constraints were not that tight. 

 

FIGURE 64  COMPARISON OF VARIOUS COST COMPONENTS: MIP VS. SACD HEURISTIC FOR VDSL NETWORKS I. (KECEL) 
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FIGURE 65 COMPARISON OF VARIOUS COST COMPONENTS: MIP VS. SACD HEURISTIC FOR VDSL NETWORKS  II. 
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Moreover, the “clear topology structure” was not a formal constraint, even if it is a fundamental 

requirement for practical applications. The topologies designed by the SACD heuristic (Figure 66 for 

Kecel) fulfill this requirement (the distinct colors represent the clustering of demand points). 

 

FIGURE 66 VDSL TOPOLOGY DESIGNED BY SACD HEURISTIC (KECEL) 

If we take a look at the cost component weights (Figure 67), the reason for focusing on equipment 

cost minimization becomes clear: DU costs dominate all other components of the cost function. This is 

mainly the consequence of the re-use of the existing (copper) infrastructure: cabling costs become 

almost negligible. 

The weighted difference in the distinct cost components between the SACD heuristic and the MIP 

solution is shown on Figure 68, as it was shown also for AETH networks above. In general, we see 

moderate differences not only for the total cost, but also for the various cost components. The colored 

circles indicate the two most interesting case studies again: “Kecel” and “Solymár”, where the build 

costs (in the feeder network) had somewhat higher weight (see Figure 67). In “Kecel”, the MIP lower 

bound and the heuristic solution leads to a different balance between equipment and cable plant build 

costs. 

 

FIGURE 67 COST COMPONENT WEIGHTS FOR AETH NETWORKS 
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According to the cost component weights (Figure 67), build costs are more emphasized in “Kecel” 

than in any other case study, and that is the reason why the heuristic has just 6,5% total cost surplus 

compared to the MIP solution, despite the 20% higher equipment costs: savings in the build costs pay 

off. On the other hand, in the “Solymár” scenario, both the equipment and build costs are higher than 

that for the MIP solution, which leads to 15% difference in total. However, even these differences fall 

in a range which is still promising for practical applications, especially if we do not forget that we were 

not comparing the heuristic to the optimum itself, we were using a lower bound instead. 

 

FIGURE 68 INCA VS. MIP: COST ADDITION BY DISTINCT COST COMPONENTS 

 SIMULATED ANNEALING 7.2.2.5.

Simulated Annealing is a complex iterative heuristic. If the necessary amount of resources (time and 

memory) is available, it leads to solid results. The specific resource requirements will be investigated in 

the next section, here we concentrate on the results in “ideal conditions”, when computation time and 

memory needs are satisfied. 

Figure 69 and the following two figures show the cost comparison for PON, AON and DSL networks 

respectively, now with Simulated Annealing added. In most cases, SA results are between MIP 

solutions and results of the highly efficient BCA/INCA/SACD heuristics, i.e. SA provides even better 

results than the above presented heuristics. In a few cases, SA results fall within the MIP “gap”. 

The proposed SA scheme provides really high quality results, at least if problem dimensions are not 

prohibitive: as the next section will show, SA suffers from scalability problems for really large-scale 

scenarios. However, according to the related work (Section 1.3), a heuristic capable to handle network 

scenarios with 1.000+ demand points is a solid result in itself. And SA provides even better results than 

the above presented heuristics for the presented five scenarios, with up to 3.000 buildings or 7.000 

demand points. 
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Flexibility of the developed Simulated Annealing scheme is demonstrated through the fact that SA 

performs well for all three different network types, even though both the cost component weights, 

and the strictness of physical constraints are completely different. This flexibility is the most important 

strength of the SA based heuristic, which makes it a promising candidate for any (yet) unknown, future 

fixed access network technology. As an element of the algorithm set, it serves as the “Jolly Joker”, if 

the more specialized heuristics were not suitable for the new technology. 

 

FIGURE 69 COST COMPARISON OF MIP, SA AND BCA HEURISTICS 
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FIGURE 71 COST COMPARISON OF MIP, SA AND SACD HEURISTICS 

The more detailed comparison, considering the distinct cost factors follows on the next page. 

Simulated Annealing provides GPON topologies with typically 5-10% higher build costs than the MIP 

results, but had almost identical fiber and equipment costs (Figure 75). 

The difference is even lower for AETH networks: all cost components of all scenarios are around or 

under 2%, except one scenario (suburban “Sashegy”), where the distribution fiber costs are 7% higher, 

but at the same time we get a bit lower build costs, i.e. a bit higher concentration of fiber over the 

installed networks links. Moreover, the amount of DUs, which is the most important optimization 

criteria, is identical to the MIP optimum on all five case studies. 

Figure 74 summarizes results for VDSL networks. As we have seen, DU costs are the dominating 

component of the cost function - SA approximates the MIP optimum within 6% even in the “worst” 

scenario in this sense. 

 

FIGURE 72 COST COMPONENT COMPARISON OF SA AND MIP (GPON) 
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FIGURE 73 COST COMPONENT COMPARISON OF SA AND MIP (AETH) 

 

FIGURE 74 COST COMPONENT COMPARISON OF SA AND MIP (VDSL) 
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FIGURE 75 TIME CONSUMPTION OF BCA, SA AND MIP SOLUTIONS 
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FIGURE 76 TIME CONSUMPTION ANALYSIS 

The resource requirement difference between these methods is significant, even from a pure 

theoretical, algorithmic point of view, and it makes the fast BCA, INCA and SACD heuristics interesting 

from “l’art pour l’art” algorithmic aspects. Constructing fast, polynomial heuristics for the highly 

complex Network Topology Design (NTD) problem is not straightforward: as we have seen in the 

related work section, the earlier published methods had much higher resource requirements. 

 LARGE-SCALE SCENARIOS AND PRACTICAL APPLICATIONS 7.2.3.1.

From a more practical point of view, network planning is an “offline” problem, therefore time 
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trends, the Central Offices are serving larger and larger areas currently and in the near future. Our last 

case study is a complete district of Budapest (“District XII”, Figure 77). This is still not the largest 

possible service area for a single Central Office, but with 4.000+ buildings and 25.000+ demand points, 

it represents a tough algorithmic challenge (Table 10). 

TABLE 10 SPECIFICATIONS OF “DISTRICT XII” CASE STUDY 

Scenario: District XII. 

 
FIGURE 77 MAP OF DISTRICT XII. 

Area (km2) 13,56 

Buildings 4 151 

Demand points 26 489 

Demand 
points/building 

6,38 

Buildings / km2 310 

Demand points / 
km2 

1950 

Graph nodes 19 331 

Graph edges 20 136 

Street system 
length (m) 

303 927 

 

Considering practical applications, the MIP approach itself cannot be used for topology design, since 

it does not result in a valid network topology, just gives an upper bound on the cost by solving a flow 

problem, but without solving the DU-demand point assignment, and also the length constraints are 

relaxed. It was used only for evaluation of the heuristics. For “District XII” scenario, MIP became 

practically useless: the GPON problem was not solved, AETH was solved, but it still had 38% gap after 

24 hours, it provided acceptable results only for VDSL (13% relative gap on exit with memory limit 

exceeded). 

Simulated Annealing, in its original version and implementation required more than 8 GB of memory, 

and almost endless running time. The memory usage was therefore reduced, however it increased the 

necessary time for calculations. Therefore a faster cooling strategy was required, in order achieve 

acceptable running times. As a result of these modifications, the simplified SA approach required 

approx. 2 GB memory, and two days (48 hours) of computation for GPON and VDSL, and still provided 

low quality results. For AETH networks SA achieved acceptable results in 18 hours. 

In contrary, the fast BCA, INCA and SACD heuristics delivered good results without any modification 

or simplification, even if evaluating solution quality is difficult, since the reference methods were 

almost useless here. Except for VDSL, where the SACD heuristic total cost was only 3% higher than the 

best known solution of the MIP problem. However these heuristics were within 10-15% from the MIP 

optimum for all five earlier presented case studies, therefore these are supposed to have a similar 

solution quality in somewhat larger scenarios as well. 
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The total cost comparison of SA and the fast heuristics is depicted on Figure 78, while the respective 

running time comparison is given on Figure 79. The fast BCA, INCA and SACD heuristics were still under 

one hour (400-2500 seconds), but Simulated Annealing, even with significantly decreased iteration 

count (faster cooling process) needs 24-48 hours or even more.  

The figures also illustrate why PON is treated as the most complex special case: Simulated Annealing, 

even after 45 hours still provided poor results: approximately 75% higher cost than the BCA heuristic. 

For AETH networks, SA was very time consuming, but at least provided acceptable results. For VDSL 

networks, SA computations lasted for 180 000 seconds, i.e. 50 hours, more than two days, and it still 

lead to approximately 100% higher cost than the SACD heuristic. 

 

FIGURE 78 TOTAL COST COMPARISON ON A LARGE SCALE SCENARIO (DISTRICT XII) 

 

FIGURE 79 RUNNING TIME COMPARISON ON A LARGE SCALE SCENARIO (DISTRICT XII) 
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8. CONCLUSION 

8.1. CONTRIBUTIONS 

THEORETIC BACKGROUND  

The first necessary step towards algorithmic topology design for Next Generation Access (NGA) 

networks was to clarify its theoretic background. Therefore I have defined a formal model for the NGA 

Topology Design (NTD) problem. 

The parameterized graph model  is technology agnostic, i.e. with the adequate parameter 

settings, it models all point-to-multipoint and also point-to-point NGA network technology types. 

Considering these different concepts or technology types, I have also identified the respective special 

cases of the NTD problem for Passive Optical Networks (PON), Active Optical Networks (AON) and 

Digital Subscriber Line (DSL) networks, and as a “degenerate” special case, point-to-point networks 

also fit in the scope of the model. 

The optimization problem was formulated for the NTD problem in general, and also for its special 

cases. Based on the formal model, the mathematical problem of topology design for NGA networks 

was analyzed algorithmically. I have identified complexity and approximability of the addressed 

problems. It was fundamental for defining reasonable requirements for the proposed algorithms. The 

problem in general, and all of its special cases were proven to be NP-complete, and their 

approximability features were also clarified. 

The in-depth investigation of the mathematical problem and its graph representation lead to 

recognition of key features of the modeling graph. The notion of criticality, the most critical nodes 

and distribution unit locations highlighted the “pillars” of the topology.  

PROPOSED METHODOLOGY 

I have analyzed the effect and significance of various physical constraints and cost components, and 

then I have proposed a set of highly specialized and effective heuristic algorithms  for the identified 

special cases of the NTD problem, based on the underlying theoretic work.  

A common feature of the heuristics is the decomposition of the topology design problem. The 

decomposed subproblems are then solved with respect to the strong cross-dependence among them. 

The presented BCA, INCA and SACD heuristics use different techniques to solve these underlying 

problems, considering the different features of the respective NGA technology types. The BCA 

heuristic for PON networks utilizes a tree-based segmentation technique, the INCA heuristic for AON 

networks is built on a bottom-up clustering concept, while the SACD heuristic for DSL networks is using 

a top-down clustering approach. However, the fact that the clustering is carried out on a graph, with a 

priori given cluster sizes makes these problems significantly different from the known clustering 

problems. 

The proposed methods have proven their ability to handle large-scale scenarios even with 10.000+ 

demand points with moderate time consumption (within one hour even for the largest scenario), and 

at the same time, delivered typically 10% or sometimes even better approximation of the optimum. 

The scalability has key importance, it makes these highly efficient heuristics a valuable contribution 

to the existing literature, not to mention the practical consequences, i.e. their possible applications. 
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REFERENCE METHODS 

Obviously, there is “no free lunch”, according to a principle of optimization. The fast heuristics deliver 

their peak performance for the respective special cases of the topology design problem, but may 

perform poor within significantly different circumstances. For the NTD problem in its general form, 

more general tools of optimization theory were used. 

An impressive variety of metaheuristic concepts  exist in the literature. Some of them were 

reviewed considering applicability for solving the addressed access network topology design problem 

[38]. The concept of Simulated Annealing turned out to be a promising optimization strategy. Its 

building blocks, i.e. the neighbor state generation routine, the cooling strategy and the decision 

functions were adapted to the problem. The careful adaptation and a highly effective implementation 

lead to a complex heuristic solution for the topology design problem in general. The numerical results 

have proven that it delivers high quality results with acceptable resource requirements for scenarios 

with up to thousands of end points. 

Exact optimization is the ultimate goal for every optimization problem. Unfortunately, as for many 

interesting problems, exact optimization was beyond possibilities due to the NP-completeness and 

typical dimensions of the problem: scenarios of practical interest contain thousands of demand points 

and tens of thousands graph nodes. Mathematical programming  as a universal tool for solving 

optimization problems was applied, however it was not trivial. The original formulation of the problem 

derived from its formal representation turned out to be quadratic. The linearization further increased 

complexity: the matrix describing the Integer Linear Programming problem had       elements, 

completely excluding its application even for the smallest test networks. At this point, a nice 

transformation of the problem lead to a linear representation with    dimensions, and this step 

permitted exact optimization. It was a crucial step for evaluation of the heuristics: even if this MIP 

formulation does not lead to a complete network topology itself, solving the flow problem defines a 

lower bound for the minimal network deployment cost, hence it was used as a benchmark for the 

heuristic solutions. 

VALIDATION & EVALUATION 

The proposed heuristics were validated against regular grid structures, where they approximated the 

analytically proven optimum within the 10% range. Finally, during the evaluation against real-world 

case the proposed methods have shown approximation performance and scalability that fulfills the 

requirements, and offers promising applications also in realistic conditions. 
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8.2. APPLICATIONS  

Even if the work presented in this study is partly theoretical, the original questions, motivating the 

research are of practical interest. Next Generation Access (NGA) networks are just at the beginning of 

a rapid growth: the technology is now mature, but the huge investment needs delayed network 

deployments. Both optimized network planning and techno-economic evaluation supports the 

process: minimization of network deployment costs is key for profitable investments, while techno-

economic evaluation is an integral part of the decision making about the service area and network 

technology for deployment. 

In our recent publications we have proven the significant accuracy advantage of a network 

deployment cost estimation methodology based on our topology design heuristics over the existing 

geometric modeling approaches [51]. 

8.2.1. NGADESIGNER FRAMEWORK 

A complex framework was developed during the last few years, driven by the theoretic results in the 

modeling, and the proposed heuristics and algorithms were implemented. The framework supports 

automatic strategic network design and techno-economic evaluation and comparison of NGA network 

technologies. The numerical results presented in the validation and evaluation section of the study 

were not possible to achieve without the framework. 

Geospatial data, technology specific physical constraints, and cost values are brought together within 

the framework and then the presented heuristics are used for automatic topology design. The 

resulting network topologies are later analyzed not only for network deployment costs (CAPEX), but 

also a more detailed business case evaluation module is integrated into the framework. 
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DATA PROCESSING MODULE 

 GIS data (various map formats) 
 Infrastructure information 

 Demand point data 
 Cost database 
 Technology specifications  

NETWORK MODELING MODULE 

 Graph model 

 Parameters 

 Initialization 

 

OPTIMIZATION MODULE 

 Topology design (system design, cable 
plant and equipment) 

 Clustering of subscribers 

 Efficient, scalable heuristics 

 Provides network data for analysis 
 

ANALYSIS MODULE 

 Visualization of network topology 

 Statistics and reports 

 Deployment cost: Bill of Material 

 Business Case Analysis 

 Techno-economic evaluation & 
comparison of NGA technologies 

 Feasibility studies and decision 
support 

 

8.3. EXPERIENCE & REFERENCE 

The methodology and the framework was used within several research and R&D projects in the 

recent years. We were involved in a Joint Activity of the EU FP7 BONE project, targeting techno-

economic evaluation of optical access networks, and we were also collaborating with Magyar Telekom 

within OASE (Optical Access Seamless Evolution) EU FP7 IP project. Recently, we have been invited in 

COMBO, an EU FP7 Integrated Project consortium about convergence of fixed and mobile broadband 

access/aggregation networks, due to our map-based techno-economic evaluation methodology. 

Part of the case study data is from joint R&D projects about optical access network evaluation and 

comparison with Magyar Telekom, the incumbent network operator in Hungary. Finally, once the 

methodology was mature, part of the framework development was done within a joint project with 

NETvisor, a telecommunication software development company.  
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