
Measurement based timing failure detection in automotive embedded systems

Balázs Scherer, Gábor Horváth

Department of Measurement and Information Systems

Budapest University of Technology and Economics

H-1117 Budapest, Magyar Tudósok krt. 2. IE444

{scherer,horvath}@mit.bme.hu

Abstract

Statistics show that in safety-critical systems,

projects should expect up to 80% of their resources to

be spent on testing. Industrial experiences have shown

that multitasking and real-time behavior based failures

are among the hardest to identify. Our paper shortly

describes the testing environment and traditional Grey

box tests used for automotive ECU verification. We

introduce the potential ways of complementing these

traditional tests with measurements essential for timing

failure detection. The problems of timing failure

detection, like the uncertainty of statistical task

execution time modeling and the difficulties of

interrupt measuring and modeling are also presented.

We introduce our measurement based low

communication bandwidth solution for complementing

traditional regression tests with timing failure detector

capabilities. The state of this work and the merits and

flaws of our solution are discussed. Our paper is

closed with presenting additional possible usage of

timing measurements and suggestions for applying

modern hardware based tracing solutions in future

tests.

1. Introduction

Automotive embedded software modules are typical

examples of safety-critical systems. Developing

software that can be marked reliable for this market

requires much effort. Statistics show that in safety-

critical systems, projects should expect up to 80% of

their resources to be spend on testing [1].

The testing process of such embedded systems

includes White box and Black or Grey box test types

[2]. White box tests, like various static analyses and

coverage tests are usually executed in the module level,

and done by the software development team. Black or

Grey box tests like limit value tests, functionality tests

and regression tests are performed at the system or

subsystem level, in the phase of module integrations.

These tests are done by separate test teams that have no

overview on the software source code.

In many cases the Black or Grey box testing process

are done for a subsystem not for the whole

functionality. For example the application level

functionality of an ECU (Electronic Control Unit) is

not present, because it is written parallel by a different

manufacturer. In this case this function is substituted by

a so called test library, to make the testing possible

with some restrictions.

This paper describes the traditional way of Black or

Grey box testing of an ECU. After presenting a current

way of testing, and the failure modes covered by these

traditional tests, suggestion for a measurement based

timing failure detection is presented. This paper shows

the software architecture and task model of a general

purpose ECU, and also describes a way for measuring

the run time of the selected tasks. These measured run

time parameters are used for estimating the execution

time of software tasks. The goal is to use these

estimated task execution time parameters for various

verifications. The current evaluation states of these

verifications are discussed with their possible future

usability.

2. Traditional ECU testing

Black box or Grey box tests examine the input and

output variables of the systems, and perform limit

checking or process identification methods to detect

faults and errors. In the ECU testing process the

regression tests are typical Grey box tests.

2.1. Regression tests

The regression tests are made after every software

modifications. Regressions tests of an automotive ECU

typically cover software modules [3] like input/output

(sensor input, actuator output), communication (CAN,

LIN, Flexray), on-board diagnostic (error filters,

diagnostic trouble code storage), diagnostic

communication (KWP2000, UDS, CCP, XCP),

operation mode management (Initial, Software update,

Ignition on, Limp-home …) and real-time operation

system (task periodicity, task switching). These tests

are done independently, focusing only on the given

module and on its data and control connection to other

modules.

2.2. Test environment

Regression tests are typically done in the

environment shown on Figure 1.

Laboratory Car

Real-Time

Car simulator

ECU

T
e
s
t
/
m
e
a
s
u
re
m
e
n
t

s
o
ft
w
a
re

Global variables

LabCar

Diagnostic

interface

Test controller PC

ECU to car

interface

Log

Test

controller

application

Test

controller

application

Test cycle control

Test

scripts

Figure 1. ECU testing environment

This environment contains the ECU, and a so called

Laboratory car, which simulates the behavior of other

ECUs, sensors and actuators of the car. The setup also

contains a test controller PC that manages the behavior

of the Laboratory car, executes the test scripts and runs

the test measurement software. The test measurement

software is able to monitor or change the internal

global variables of the ECU. Most of the regression

tests are done by checking, whether these internal

variables contain the right values during the test cycle,

and eventually modifying the proper internal variables

to stimulate the system.

2.3. Test interface

The most critical part of this set-up is the test

interface that provides access to the internal variables

of the ECU. There are two traditional types of test

interfaces used:

• Dual port RAM based test interface.

• Diagnostic communication based interface.

In the dual port RAM interface case the RAM of the

ECU is replaced with a special hardware part that also

makes the content of the RAM available for read and

modification to the test tool. This solution is a

nonintrusive one, with high data communication

bandwidth. The main drawback of this dual port

interface is that it is very costly, and from many points

of view it is obsolete. Modern microcontrollers have

enough internal SRAM for data storage, and their

program memory Flash is accelerated enough for more

than 100MHz CPU clock frequency with cache alike

flash accelerator blocks. Therefore in many cases

additional costly RAM chips are not used in these

ECUs, and the dual port RAM approach cannot be

applied. Certainly in modern microcontrollers there are

ways to provide similar nonintrusive trace and

modification interface, but these are chip vendor

specific and currently not used commonly in testing

processes. These technologies will be discussed in

Section 9, in the future work part.

Another way for reaching the global variables of the

ECU is the diagnostic communication based test

interface. This solution is the most widespread used

one, and test software systems like ETAS INCA [4],

Vector CANape [5] support this solution. Diagnostic

communications are often done on the same network

interface as the normal communication. This technique

is an intrusive one, however the load caused by

diagnosis is treated as a normal load, and therefore if it

is lower than a certain value, which is about up to 10%

of the communication bandwidth, it should be handled

by the ECU at any time.

In the automotive industry there are four diagnostic

protocols that can be used for this kind of testing.

These are the CCP (Can Calibration Protocol), XCP

(Universal Measurement and Calibration Protocol

Family), KWP2000 (Keyword Protocol 2000) and

UDS (Unified Diagnostic Services).

KWP2000, and UDS mainly used for after

production service purposes. Due to its small footprint

and easiness CCP is the most commonly used protocol

in the test and development processes.

CCP [6] is a simple master – slave protocol using

CAN (Controller Area Network) as communication

interface. By using CCP the tester (master) can read or

modify the content of the ECU’s (slave) global

memory. Tester can also program the Data Acquisition

Processor in the slave to make it send measurement

data periodically. The data to be sent periodically is

specified by using the Object Descriptor Tables that

describe the memory addresses and lengths of the data.

XCP is the upgraded version of CCP. While CCP is

limited to the CAN bus, XCP can also use FlexRay,

Ethernet and USB as test interface.

2.4. Global variables

To handle the global variables of the ECU, these

diagnostic techniques are using the MAP or ELF files

generated during the compile of the source code of

ECU software. These files contain the name and

address pairs of every global variables of the system,

which will be the scope of all traditional regression

tests. The information stored in the MAP or ELF files

does not contain the linkage between the raw stored

variables and their real physical meanings. Therefore to

specify this transformation an ASAM-MCD2 MC [7]

(ECU Measurement and Calibration Data Exchange

Format) market name ASAP2 format file is generated

from the names, memory address and sizes of the

variables. This ASAP2 file complements the MAP/ELF

file information with a transformation formula

describing the way of converting a raw variable data to

its real physical form. These ASAP2 files are used by

the measurement and calibration tools like Vector

CANape or ETAS INCA.

3. Timing failures

Traditional Regression tests are mainly focusing on

one software module. Feedbacks and experiences have

shown that these tests probably do not cover some

module to module interaction or timing related

problems. These problems are manifested in failure

logs like unwanted resets, and strange system behavior

in some situations.

Therefore there was a need for new tests that try to

catch the cause of these problems.

3.1. Failure model

The failure model of such a real-time embedded

system [8] can be divided into sequential and

multitasking real-time behavior based failures shown

on Figure 2.

The feedbacks and experiences have shown that the

test coverage for sequential failures is high enough.

Traditional white box and regression tests catch these

types of failures, but the multitasking real-time failure

detection is not perfect, so it should be improved.

Control failures
(wrong if-then-branch …)

Value failure
(wrong variable value…)

Addressing failure
(correct value to an incorrect variable …)Input handling failure

(incorrect sensor value …)

Sequential failures

Multitasking and real-time failures

Caused by sequential

failuresTiming failures
(deadline violation,

jitter, too many ITs …)

Interleaving failures
(Unwanted side effect

from non reentrant

code, shared data …)

Synchronization fault
(deadlock …)

Figure 2. Failure model

There are three categories of such multitasking and

real-time failures: the Timing failures, Synchronization

failures and Interleaving failures.

In our work we will focus on the Timing failures,

because the static analysis in the white box test phase

leaves these one uncovered the most.

3.2. Possible solutions

The most foundational thing of Timing failure

detection is the static prediction or runtime

measurement of software task WCETs (Worst Case

Execution Time). These execution time predictions or

measurements can be used to calculate the worst case

response time for each task, and therefore analyze

whether the system will be able to behave in real-time

in every situation by keeping the schedule of the tasks.

Real-time systems out of their schedule can show

symptoms like unwanted resets and strange behavior

for a short time.

Static calculation of execution times and WCET is

not a trivial task and many articles discuss its problems

[9]. A recent survey is a good introduction to these

methods [10]. The two main sources of WCET

deviation is from low-level hardware optimization

features, and high level path dependencies. Low level

features are for example the effects of caches and

pipelines. These dependencies have an impact on close

neighboring blocks and in the general case the

dependency decreases for more distant blocks. High

level features are for instance the data dependent paths

and mutually exclusive paths.

There are many tools regarding this topic, and many

of them are commercially available. Some tools use

pure static analysis of the program, while other tools

combine static analysis with dynamic measurements of

the execution times of program parts. Unlike most

applications of static program analysis, WCET tools

must analyze the machine code, not (only) the source

code. This means that the analysis depends on the

target processor, so WCET tools typically come in

several versions, one for each supported target

processor or even for each target system with a

particular set of caches and memory interfaces. Some

parts of the machine code analysis may also depend on

the compiler that generates the machine code. A typical

example for such compiler dependency is provided by

Hitex: four compilers (GNU GCC, and three

commercial compilers) were compared, with the same

processor (LPC2294 an ARM7TDMI core processor)

at the same speed, with the same benchmark and even

the commercial compilers were differing more then

30% in their execution time results [11].

Another way of execution time verification is a

purely measurement based solution, when the timing

parameters are acquired during run time testing.

However this is theoretically simpler, but requires code

instrumentation and its coverage is limited by the run

time test (only execution paths affected by the run time

test can be inspected).

3.3. Restrictions

To make our work the easiest to apply in the future,

in accordance with our industrial partner we decided to

complement the existing grey box tests with a timing

failure detector property. Therefore we used a

measurement based approach that can be integrated

into the test environment described in section 2.

Our main goal is to perform this new test property

as “background” verification during each traditional

regression test. This way we can increase the test

coverage without causing additional costs by

lengthening the test process. The term “background”

means the following: during regression tests, this new

test simply measures some important features, by using

the traditional diagnostic channels (this way do not

cause significant additional load to the system under

test), and at the end of the traditional test, a statement is

given highlighting the noticed timing failures.

4. Measurement

The first phase of planning the timing failure

detector is the selection of features and parameters to

be measured during the regression tests. A detailed

knowledge about the software architecture of an

automotive ECU is needed for this decision. The

architecture of the system under test can be used also to

create a model or simulation of it. This is important,

because in many cases the complexity of the ECU

software is too big for trying out theories and the cost

and time schedule of the industrial test stands could

also be a bottleneck of experimentation.

4.1. System model

An ECU or TCU can be treated as a general purpose

real-time embedded system with the software modules

shown on Figure 3 (this figure is based on OSEK COM

specification, with some modification).

ECU hardware

Comm. interface I/O modules.
Analog / Digital I/O

I / O diagnostic

Com diag.

RTOS

M
o
d
e

m
a
n
a
g
e
m
e
n
t

Application

Communication layer

Figure 3. ECU software architecture

From the measurement and instrumentation point of

view the RTOS model of the system is the most

important. Specifications for automotive RTOS support

are described first in the OSEK/VDX OS [12]

standard, which is used as a base of AUTOSAR

specifications for operating systems. Most of the

operating systems used in ECUs are conform to this

standard.

The RTOS model of a usual ECU can be described

as:

• Fixed priority, preemptive scheduling.

• Fixed task periods with 2.5ms, 5ms, 10ms,

20ms, 30ms, 50ms and 100ms tasks.

• Tasks with lower period have the higher

priority.

• Interrupts have short and predictable

execution.

The worst case response time of the tasks can be

calculated accordingly to the Deadline Monotonic

Analysis [13] as it is can be done in many automotive

OSEK/VDX OS based system [14].

Deadline monotonic analysis (DMA) is a technique

to calculate the worst-case response time of tasks. It

can be used to ensure that all tasks will meet their

deadlines, or in other words, that the system is

schedulable. Standard notations of DMA are shown on

Figure 4.

R
i

D
i

T
i

C
i

t

Ti is the period of task i

Di is the deadline of task i

Ci is the worst-case execution time of task i

Ri is the worst-case response time to task i

Figure 4. DMA notations

Ti and Di can be derived from requirements. While

the value of Ci is need to be measured.

4.2. RTOS instrumentation and measurements

In some RTOS the built in instrumentation can

provide the value of Ci, however it is not a trivial task,

because it requires low kernel level instrumentation.

Our industrial partner’s RTOS hasn’t got such

instrumentation, and they refuse to make any such deep

kernel level modification on their RTOS, because of its

high testing cost. The built in instrumentation of that

RTOS can provide the value of Ri, the number of

interrupts in the last 2.5ms time period and the

processor load in the last 100ms period, so we should

use these values.

Unfortunately the value of Ri alone is useless,

because a low Ri value can cover a high Ci value and

vice versa as shown on a measurement results of Figure

5. But, complementing the value of Ri with the task end

timestamp the scheduling can be restored, and an

estimation for Ci can be given.

The measurement of task end timestamp is very

simple, it does not require deep kernel level

instrumentation, and our partner accepted to do this

implementation.

The measured parameters have the resolution of

1µs. This resolution is enough for timing failure
detection, and ensures that the amount of data to be

transferred do not overload the communication bus.

4.5 5 5.5 6 6.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Test time [us]

R
e
s
p
o
n
s
e
 a
n
d
 e
x
e
c
u
ti
o
n
 t
im
e
s
 [
m
s
]

Ri (Response time)

Ci (Execution time)

Figure 5. Ri and Ci relationship

4.3. Test system

The development of the Timing failure detector is

done in three stages. The first stage is to try out the

methods in a Matlab based scheduler simulator. The

second state is to verify the theories in an ECU

simulator, and the third last stage is to apply it on a real

ECU.

The ECU simulator is based on the STM32F107

ARM Cortex M3 based MCU, with 72MHz of CPU

clock speed, 256kbytes of Flash, and 64kbytes of

RAM, and 2 CAN channels. The properties of this

ECU simulator is about the same as a mid or low range

automotive ECU. We use the Vector CCP stack on this

card as diagnostic communication. Vector CANape is

used as measurement software, and we substitute the

Laboratory car with a National Instruments cRIO

modular hardware. Our test system just likes the one

shown on Figure 1, but much simpler. Our ECU

simulator internally provides the skeleton of the

software layers shown on Figure 3. We can use three

types of RTOS make our tests RTOS independent.

These three RTOS are FreeRTOS, µC-OS and eCOS.
The instrumentation described in 4.2 is implemented

for all of these RTOS, but to verify our theories for

some RTOS we added more sophisticated

instrumentation too.

5. Worst case task response time

calculation

Timing failure detection is based on the calculation

of tasks WCETs. Measurement based techniques for

task WCET estimation were evaluated in our Matlab

based simulator, then in our test system. The first step

of task WCET estimation is to estimate the execution

time (Ci) for every task in every period. This is done by

using Ri and other measured parameters. To estimate

Ci from Ri a reconstruction of scheduling is needed.

5.1. Reconstruction of scheduling

From the known priorities and periodicity of tasks,

the measured response time and from the end of task

time stamps the scheduling can be restored. This

statement is true with 2 restrictions.

The first is that we do not take into the account the

effect caused by priority inversion, where the higher

priority tasks are blocked by a lower priority one. This

restriction can be done in our cases, because in such

systems it is usually prohibited to use blocking task

synchronization methods that can lead to priority

inversion.

5.555 5.56 5.565 5.57

x 10
5

0

1

2

3

4

5

6

7

8

Test time [us]

T
a
s
k
 I
D
s

0
:
In
te
rr
u
p
t

1
:
2
.5
 m
s
 t
a
s
k

2
:
5
m
s
 t
a
s
k

7
:
1
0
0
m
s
 t
a
s
k

Original scheduling

Restored scheduling

Figure 6. Restored scheduling vs. original

The second is to neglect the effect of the interrupts,

which is a much harder problem to solve. Figure 6

shows an example for scheduling restoration, without

compensating the effects of interrupts.

5.2. Effects of interrupts

In most of the companies developing embedded

software products for safety critical systems, there are

guides for handling and using interrupts. These guides

according to safety standards [15] usually make more

and more restrictions for the use of interrupts as the

safety level of the product is become higher. For

example, for a SIL (Safety Integrity Leve) 1 or 2

product it is only a recommendation to use less

interrupt then a normal one, for a SIL 3 product it is a

hard rule to use as small amount of ITs as possible, and

handle events with periodic polling instead. This means

that in safety critical systems we can assume only a few

interrupt sources.

 Interrupt modeling has two main parts to discuss.

The first is the execution time prediction of an

interrupt. The second is the distribution of interrupt

occurrences in time.

 The execution time prediction of interrupt can be

based on statistical WCET calculation results.

Interrupts in safety critical systems generally has only a

few high level execution time dependences, and mainly

the low level ones like IT jitter, pipeline flush etc.

dominates. Our survey and measurements made on

different interrupt sources in the test system shows that

we can suggest an extreme value probability

distribution for interrupt execution time modeling.

50 100 150 200 250 300 350

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Interrupt occurences [us]

N
u
m
b
e
r
o
f
IT
s

Figure 7. CAN powertrain IT distribution

The second problem is to specify the distribution of

interrupt occurrences in time. Some of the few IT

sources will be periodic for a sure, like RTOS heart

beat timer, but most of them will be unpredictable.

However the events like message receiving interrupts

of communication interfaces seems to be unpredictable

and random, but that is not absolutely true. In

automotive systems most of these events tend to be

periodic, even when using an event base

communication like CAN. For example in normal

communication mode every CAN message is

transmitted periodically, but in non TTCAN networks

these are not synchronized.

Figure 7 shows an example for interrupt occurrence

distribution in a 500kbit/sec powertrain CAN network.

It is impossible to create an unequivocal probability

distribution for every interrupt sources. Each source

should be modeled separately.

5.4. Statistical worst case Ri calculation

Usually Deadline Monotonic Analysis (DMA) is

used to calculate the worst-case response time of tasks.

DMA is using the following iterative formula:

k

ihpk k

i
i

n

i

ii

C
T

R
CR

CR

∑
∈∀

+

+=

=

)(

1

0

where

k

ihpk k

i C
T

R
∑
∈∀

)(

is the total interference from all higher-priority

tasks, and hp(i) is the set of tasks with priority higher

than i.

In this formula the worst case task execution times

should be used as Ci and Ck parameters. In our example

it only can be done by using probability distributions in

the following way:

1. Compensate the IT effects for every task i

from the restored scheduling to get the

probability distribution of Ci.

2. Estimate worst case Ci distribution for every

task.

3. Make the iterative computation with the

probability distributions of tasks worst case Ci

and with the probability distribution of

interrupt effects.

There are suggestions for statistical worst case

response time calculations in the literature [16],[9] but

generally response time calculation is a very difficult

NP-hard problem [17]. To make that problem harder in

this situation, we should use uncertain arguments,

because as presented in section 5.2 the effects of

interrupts generally cannot be modeled correctly by

probability distributions, and in the procedure above

we should use the IT models twice. As a conclusion,

the results of the statistical worst case response time

calculation can be given numerically, but these results

could lead to a very long tail and imprecise probability

distributions at the end. As we studied it, these

computation doubtfully could give distributions, where

the probability for timing failure is lower than 10
-8
 or

10
-9
 (general requirement for such systems) for any test

case. Therefore these calculations would indicate a

huge value of false positive detections, and therefore

the test would be useless.

The results of the probability based worst case Ri

calculation could be improved greatly, by applying

detailed IT measurements. This detailed IT

measurement should provide the type of the IT, the

start time and the end time of it. Therefore it would be

possible to restore the scheduling with the effect of

interrupts, including IT nestings too. From this restored

scheduling the WCET of tasks can be predicted in a

more exact way, and the worst case response time

calculation could use a better IT model derived from

the measurements.

This approach would be the best way for timing

failure detection, but the measurement communication

bandwidth of this solution is very high. In the most

optimistic calculations for data transfer, we can assume

2 bytes pro ITs to log (low, 10µs resolution start and
stop timestamp in a 2.5ms period), and 2 ITs pro 1ms

(a normal automotive system has more than 2 ITs pro

1ms). This very optimistically calculated data transfer

indicates more then 15% load, without any other

measurements to a 500kbit/sec CAN network. In

section 2.3 we specified that up to 10% of diagnostic

communication load is allowed for our test in a

traditional environment. So as a conclusion this method

cannot be applied to complement traditional Grey box

tests.

6. Simplified, low data rate timing failure

detection

Section 5 has shown that statistical worst case

response time calculation cannot be used in the Grey

box test environment introduced in section 2.2. The

question is, whether there is any way to use the

measurements shown in section 4.2 to make a statement

about the timing healthiness of the system.

0 2 4 6 8 10

x 10
5

0

2

4

6

8

10

12

14

16

18

Test time [us]

R
e
s
p
o
n
s
e
 a
n
d
 e
x
e
c
u
ti
o
n
 t
im
e
s
 [
m
s
]

Ri (Response time)

Ci (Execution time)

Overestimated Ci

Figure 8. Overestimated task execution times

Our suggestion is to use the reconstructed

scheduling shown in section 5.1, but without trying to

remove the effects of interrupts from it. The result is a

set of overestimated executing times for every tasks.

Figure 8 shows a sample relation between this

overestimated execution time, the task response time

and real execution times.

There is a guarantee that the maximum of these

overestimated execution times will be higher than the

worst case execution time in the test cycle. These

overestimated worst case execution times could be used

for the DMA algorithm, without taking into the account

the effect of the interrupts, because the worst case

overestimated execution times already contains the

effects of the ITs. But there is no guarantee that the

result of this calculation will be the realistic worst case

situation, because the maxima of the overestimated

execution times not definitely contain the maxima of

interrupt interferences. Therefore the possible

differences between the interrupt effects embedded into

the overestimated execution time maxima, and the

worst case interrupt load should be compensated.

Our suggestion is not to make this compensation for

task to task, because that procedure would not fit to the

mainly periodic nature of interrupt occurrences. So

instead of compensating the possible interrupt

differences to task to task we suggest to take this

compensation at the system schedule level. To do this

we need a prediction for the schedule ability of the

tasks, without calculating the worst case response times

with DMA.

The so called Liu and Layland bound can be used

for this purpose [18]. This bound specifies that a

system consists of n tasks is schedulable if the sum of

the maximum utilizations of the tasks, denoted as U,

satisfies the inequality:

)12(
1

−≤ nnU

The Liu and Layland bound gives a sufficient and

hence conservative condition. A system may be

schedulable though its maximum utilization exceeds

this bound.

Our suggestion is to use this conservative condition

and complement it with the worst case IT difference:

IdnU n −−≤)12(
1

Id is the difference between the maximum IT load

measured during the test, and the minimum of IT loads

of the periods, which are used for the calculation of U.

A period is used for the calculation of U if an

overestimated task execution time is selected from it.

The IT load is calculated by subtracting the sum of

overestimated task execution times plus the CPU load

from the period of time the CPU load was measured

(usually it is synchronized with a low period task like

the 100ms task). This IT load is therefore the time

when the CPU was handling interrupts during the

execution of the idle task.

Our experiences have shown that this is a really

conservative higher bound, therefore if the calculated

utility of the system pass this, then there is a very low

probability to any timing failure remains in the

measured test case.

The diagnostic communication load of this solution

is not more then 8% with using CCP messages in a

500kbit/sec CAN network. Therefore it can be applied

in traditional Grey box tests.

7. Using timing measurements in regression

tests

Methods presented in section 5 and 6 do not take

into account the type of the tests. These sections only

deal with the measured values and their applicability;

however the term regression test could involve features

that can be beneficial for failure detection.

Many times regression tests are made after a

modification of a software system that previously had

been marked as reliable [2]. This modification can be a

change of a parameter or adding a new function to the

system, but the important thing is that there was a

previous version marked as reliable. Therefore, if a

timing data set of a good version or versions can be

collected and learned by the checker, then many

potential errors can be uncovered by checking. The

question is whether there are any differences between

the timing characteristic of the new software version

and the previous ones.

7.1. WCET deviations between tests

Collected information form the previous

measurements can be used to check the differences

between the new and the stored overestimated worst

case execution times. It is very important to match

comparable test cases. Thus the tester should contain a

large set of data for every regression test cycle with

every hardware version and every major software

version.

The collection of such data set is a very time

demanding one, but it can be done during the normal

tests, and this comparison can be an efficient way to

catch problems. For example in a situation where the

part of a software system is tested, there are probably

no deadline violations, but a significant increase in an

execution time compared to a previous version could

indicate some programming faults.

7.2. Executing time deviations in different

operating modes

Automotive ECUs have many operating modes.

Some of them are listed in section 2.1. Task execution

times statistics highly depend on the operation modes.

Execution times much smaller then the global worst

case execution time could indicate serious errors in

some operating modes. A real-life precedent for this is

an incorrect behavior in power-safe modes, which lead

to the discharge of the battery. Therefore it is important

to go beyond the global worst case execution time test.

The checker should perform an execution time check

for every operating modes of the system separately.

7.3. Executing time clustering

Not only the worst case execution times can contain

information, but the change of the execution time

parameters during a test flow also can be interesting.

Therefore it is beneficial to try to make clusters form

execution time measurements. These clusters represent

the major execution paths of the system software,

however an exact relationship cannot be given between

them (many paths can have similar execution times).

These clusters can be used to check, whether the

system during a test flow tends to be executing the

same functionalities as it was done in the previously

good releases. Significant differences between the

execution paths can also signal software faults.

8. Conclusions

Our paper shortly described the testing environment

and traditional Grey box tests used for automotive ECU

verification. We introduced the potential ways of

complementing these traditional tests with

measurements essential for timing failure detection. In

section 5, we have presented the problems of restoring

the scheduling of the system that essential for acquiring

the execution times of tasks. The difficulties of

interrupt modeling are also discussed. Section 5.4 has

shown a probability based approach for compensating

the effects of interrupts, but our studies has shown that

the amount of measured information with traditional

diagnostic communication based solutions is not

enough to give a usable probability distribution based

solution for the timing failure detection problem.

Section 6 has shown a highly simplified low data rate

solution for timing failure detection. This method can

be used in the traditional test environments and

diagnostic communication. It can give a high

probability for signaling situations from the measured

data that can lead to timing failure. Finally section 7

has introduced the possible further applications of

timing measurements in regression test. These

applications require a huge timing data set from

reliable applications, and based on this data set

differences can be detected in new software versions.

The results and theories presented in this work have

been evaluated in the test system presented in section

4.3, and preliminarily studies have been done for some

of the methods by using data set from real automotive

regression tests. The actuality of this problem is shown

by a recent publication of Vector Informatics showing

their solutions for timing analysis [19].

9. Future work

The theories presented in this paper are already

evaluated in the test system, but many more

measurements, and failure detection case studies are

needed to presents their applicability in real situations.

Adopting the test from the test system to a real

environment also provides challenges.

9.1. Modern tracing techniques

Section 2.3 has presented the test interfaces used in

Grey box tests. Dual memory interfaces are getting

more and more obsolete for such tests, but most of the

modern microcontrollers provide ways for high data

rate nonintrusive data and instruction tracing.

A typical example for such embedded trace support

is the CoreSight Debug support and Embedded Trace

Macrocell of ARM [20]. These hardware blocks

provide nonintrusive debug and trace interface even in

the lowest end 32bit microcontrollers. On-the-fly

debugging, integrated data trace and optional

instruction trace are the main features of these blocks.

Data trace provides features like program counter

sampling, event counters, and interrupt execution

tracing with timing statistics. Instruction Trace enables

analysis of execution history, and can be used for code

coverage, and performance analysis. These hardware

blocks also enable the interfacing to the internal

memory and peripherals in a nonintrusive way (AHB

access port for ARM Cortex cores), therefore variables

specified in ASAP2 files can be acquired and modified

in a same way as it its done in a dual port memory test

interface case.

The CoreSight Debug support and Embedded Trace

Macrocell are ARM specific solutions but the IEEE-

ISTO 5001-2003 Nexus port also specifies similar

goals, so in the future most of the microcontroller will

have similar functionalities.

 Another good example for the need of such data

trace support is the TMS570 of Texas Instruments. The

TMS570 is a state of the art dual core ARM Cortex-

R4F based floating point MCUs that meets

IEC61508/SIL3 safety standards and released in 2009.

These series of microcontrollers is primary designed

for safety critical applications, with redundant dual

core CPU and memories with error correcting

capabilities. The TMS570 is enabled with a CoreSight

debug support, but beside this support it provides a

RAM trace port (RTP) module, which allows to do

data trace of CPU or other master accesses to the

internal RAM and peripherals with up to 133MBytes/s

transfer rate.

9.2. Applying tracing techniques

Currently the diagnostic communication based

testing is the most widespread used. Therefore it is

important to give solutions for that low data speed

interface, however unquestionably the trace hardware

interfaces introduced above will be used in future

testing environments. From our point of view these

interfaces enables more precise measurements, thus the

probability based timing failure detection approach

presented in section 5.4 can be applied. These tracing

methods also could have great use in the checks

presented in section 7. For example, by using precise

interrupt measurement a knowledge base for every

interrupt type can be built and therefore the worst case

interrupt situations could be predicted much more

realistically, then general probability distributions.

We are about to improve our test system with such

tracing tools, and adopt our methods for this

technology.

10. References

[1] Brooks, F.P. Jr., “The Mythical Man-Month: Essays on

Software Engineering”, Addison-Wesley Pub. Co., 1995.

ISBN-10: 0201835959.

[2] Thomas Müller and others, “Certified Tester Foundation

Level Syllabus”, International Software Testing

Qualifications Board, Version 2010. www.istqb.org.

[3] Joerg Schaeuffele, Thomas Zurawka, “Automotive

Software Engineering: Principles, Processes, Methods, and

Tools” SAE International, June 1 2005, ISBN-10:

0768014905.

[4] ETAS Group, INCA homepage:

http://www.etas.com/en/products/inca.php

[5] Vector Informatik GmbH. CANape homepage:

http://www.vector.com/vi_canape_en.html

[6] ASAM MCD-1.CCP: “CAN Calibration Protocol”, ASAP

Standard, Version 2.1, February 1999.

[7] ASAM MCD-2 MC: “ECU Measurement and Calibration

Data Exchange Format” market name ASAP2. version 1.6.1

[8] H. Thane. “Monitoring, testing and debugging of

distributed real-time systems” In Doctoral Thesis, Royal

Institute of Technology, KTH, S100 44 Stockholm, Sweden,

May 2000. Mechatronic Laboratory, Department ofMachine

Design.

[9] Insup Lee, Joseph Y-T. Leung, Sang H. Son, editors,

“Handbook of Real-Time and Embedded Systems”, Chapman

& Hall/CRC, 200y, ISBN-10: 1-58488-678-1.

[10] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S.

Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann,

T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, P.

Stenström, “The worst-case execution time problem -

overview of methods and survey of tools” ACM Transactions

on Embedded Computing Systems, Volume 7, Issue 3, April

2008.

[11] Trevor Martin “The Insider’s Guide to the Philips

ARM7-based Microcontrollers. An Engineer’s introduction to

the LPC2100 series“, Hitex Ltd, 2005 ISBN: 0-9549988 1

[12] OSEK/VDX “Operating System Specification 2.2.3”

February 17th, 2005.

http://portal.osek-vdx.org/files/pdf/specs/os223.pdf

[13] Ken Tindell “Deadline Monotonic Analysis”, Embedded

System Progrming magazine, June 2000.

[14] Andrew Coombes, “Deadline Timing and OSEK”,

Embedded Systems Programming magazine, December 2002.

[15] IEC standard 61508, „Functional safety of

electrical/electronic/programmable electronic safety-related

systems”, http://www.iec.ch

[16] Mark K. Gardner, Jane W. S. Liu “Analyzing Stochastic

Fixed-Priority Real-Time Systems“, Tools and Algorithms for

the Construction and Analysis of Systems. Lecture Notes in

Computer Science, 1999, Volume 1579/1999, 44-58, DOI:

10.1007/3-540-49059-0_4

[17] Friedrich Eisenbrand Thomas Rothvoß “Static-priority

Real-time Scheduling: Response Time Computation is NP-

hard” August 21, 2008.

 [18] C. L. Liu and J. W. Layland.”Scheduling algorithms for

multiprogramming in a hard-real-time environment”, Journal

of the Association for Computing Machinery, 20(1):46-61,

January 1973.

[19] Helmut Brock, Vector Informatik, “AUTOSAR OS

measures task execution times”, EETimes Design. September

2010.

[20] Alex Growcoot „Cortex-M3 Debug & Optimization”

ARM Technical Symposia, November 2009.

