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Abstract 
 

Statistics show that in safety-critical systems, 

projects should expect up to 80% of their resources to 

be spent on testing. Industrial experiences have shown 

that multitasking and real-time behavior based failures 

are among the hardest to identify. Our paper shortly 

describes the testing environment and traditional Grey 

box tests used for automotive ECU verification. We 

introduce the potential ways of complementing these 

traditional tests with measurements essential for timing 

failure detection. The problems of timing failure 

detection, like the uncertainty of statistical task 

execution time modeling and the difficulties of 

interrupt measuring and modeling are also presented. 

We introduce our measurement based low 

communication bandwidth solution for complementing 

traditional regression tests with timing failure detector 

capabilities. The state of this work and the merits and 

flaws of our solution are discussed. Our paper is 

closed with presenting additional possible usage of 

timing measurements and suggestions for applying 

modern hardware based tracing solutions in future 

tests.  

 

 

1. Introduction 
 

Automotive embedded software modules are typical 

examples of safety-critical systems. Developing 

software that can be marked reliable for this market 

requires much effort. Statistics show that in safety-

critical systems, projects should expect up to 80% of 

their resources to be spend on testing [1].  

The testing process of such embedded systems 

includes White box and Black or Grey box test types 

[2]. White box tests, like various static analyses and 

coverage tests are usually executed in the module level, 

and done by the software development team. Black or 

Grey box tests like limit value tests, functionality tests 

and regression tests are performed at the system or 

subsystem level, in the phase of module integrations. 

These tests are done by separate test teams that have no 

overview on the software source code.  

In many cases the Black or Grey box testing process 

are done for a subsystem not for the whole 

functionality. For example the application level 

functionality of an ECU (Electronic Control Unit) is 

not present, because it is written parallel by a different 

manufacturer. In this case this function is substituted by 

a so called test library, to make the testing possible 

with some restrictions. 

This paper describes the traditional way of Black or 

Grey box testing of an ECU. After presenting a current 

way of testing, and the failure modes covered by these 

traditional tests, suggestion for a measurement based 

timing failure detection is presented. This paper shows 

the software architecture and task model of a general 

purpose ECU, and also describes a way for measuring 

the run time of the selected tasks. These measured run 

time parameters are used for estimating the execution 

time of software tasks. The goal is to use these 

estimated task execution time parameters for various 

verifications. The current evaluation states of these 

verifications are discussed with their possible future 

usability.        

 

2. Traditional ECU testing 
 

Black box or Grey box tests examine the input and 

output variables of the systems, and perform limit 

checking or process identification methods to detect 

faults and errors. In the ECU testing process the 

regression tests are typical Grey box tests. 

 

2.1. Regression tests 
 



The regression tests are made after every software 

modifications. Regressions tests of an automotive ECU 

typically cover software modules [3] like input/output 

(sensor input, actuator output), communication (CAN, 

LIN, Flexray), on-board diagnostic (error filters, 

diagnostic trouble code storage), diagnostic 

communication (KWP2000, UDS, CCP, XCP), 

operation mode management (Initial, Software update, 

Ignition on, Limp-home …) and real-time operation 

system (task periodicity, task switching). These tests 

are done independently, focusing only on the given 

module and on its data and control connection to other 

modules. 

 

2.2. Test environment 
 

Regression tests are typically done in the 

environment shown on Figure 1.  

 

Laboratory Car

Real-Time

Car simulator

ECU

T
e
s
t 
/ 
m
e
a
s
u
re
m
e
n
t 

s
o
ft
w
a
re

Global variables

LabCar

Diagnostic

interface

Test controller PC

ECU to car

interface

Log

Test

controller

application

Test

controller

application

Test cycle control

Test

scripts

 
 

Figure 1. ECU testing environment 

 

This environment contains the ECU, and a so called 

Laboratory car, which simulates the behavior of other 

ECUs, sensors and actuators of the car. The setup also 

contains a test controller PC that manages the behavior 

of the Laboratory car, executes the test scripts and runs 

the test measurement software. The test measurement 

software is able to monitor or change the internal 

global variables of the ECU. Most of the regression 

tests are done by checking, whether these internal 

variables contain the right values during the test cycle, 

and eventually modifying the proper internal variables 

to stimulate the system. 

 

2.3. Test interface 
 

The most critical part of this set-up is the test 

interface that provides access to the internal variables 

of the ECU. There are two traditional types of test 

interfaces used: 

 

• Dual port RAM based test interface. 

 

• Diagnostic communication based interface. 

 

In the dual port RAM interface case the RAM of the 

ECU is replaced with a special hardware part that also 

makes the content of the RAM available for read and 

modification to the test tool. This solution is a 

nonintrusive one, with high data communication 

bandwidth. The main drawback of this dual port 

interface is that it is very costly, and from many points 

of view it is obsolete. Modern microcontrollers have 

enough internal SRAM for data storage, and their 

program memory Flash is accelerated enough for more 

than 100MHz CPU clock frequency with cache alike 

flash accelerator blocks. Therefore in many cases 

additional costly RAM chips are not used in these 

ECUs, and the dual port RAM approach cannot be 

applied. Certainly in modern microcontrollers there are 

ways to provide similar nonintrusive trace and 

modification interface, but these are chip vendor 

specific and currently not used commonly in testing 

processes. These technologies will be discussed in 

Section 9, in the future work part. 

Another way for reaching the global variables of the 

ECU is the diagnostic communication based test 

interface. This solution is the most widespread used 

one, and test software systems like ETAS INCA [4], 

Vector CANape [5] support this solution. Diagnostic 

communications are often done on the same network 

interface as the normal communication. This technique 

is an intrusive one, however the load caused by 

diagnosis is treated as a normal load, and therefore if it 

is lower than a certain value, which is about up to 10% 

of the communication bandwidth, it should be handled 

by the ECU at any time. 

In the automotive industry there are four diagnostic 

protocols that can be used for this kind of testing. 

These are the CCP (Can Calibration Protocol), XCP 

(Universal Measurement and Calibration Protocol 

Family), KWP2000 (Keyword Protocol 2000) and 

UDS (Unified Diagnostic Services).  

KWP2000, and UDS mainly used for after 

production service purposes. Due to its small footprint 

and easiness CCP is the most commonly used protocol 

in the test and development processes. 

CCP [6] is a simple master – slave protocol using 

CAN (Controller Area Network) as communication 



interface. By using CCP the tester (master) can read or 

modify the content of the ECU’s (slave) global 

memory. Tester can also program the Data Acquisition 

Processor in the slave to make it send measurement 

data periodically. The data to be sent periodically is 

specified by using the Object Descriptor Tables that 

describe the memory addresses and lengths of the data.  

XCP is the upgraded version of CCP. While CCP is 

limited to the CAN bus, XCP can also use FlexRay, 

Ethernet and USB as test interface. 

 

2.4. Global variables 
 

To handle the global variables of the ECU, these 

diagnostic techniques are using the MAP or ELF files 

generated during the compile of the source code of 

ECU software. These files contain the name and 

address pairs of every global variables of the system, 

which will be the scope of all traditional regression 

tests. The information stored in the MAP or ELF files 

does not contain the linkage between the raw stored 

variables and their real physical meanings. Therefore to 

specify this transformation an ASAM-MCD2 MC [7] 

(ECU Measurement and Calibration Data Exchange 

Format) market name ASAP2 format file is generated 

from the names, memory address and sizes of the 

variables. This ASAP2 file complements the MAP/ELF 

file information with a transformation formula 

describing the way of converting a raw variable data to 

its real physical form. These ASAP2 files are used by 

the measurement and calibration tools like Vector 

CANape or ETAS INCA. 

 

3. Timing failures 
 

Traditional Regression tests are mainly focusing on 

one software module. Feedbacks and experiences have 

shown that these tests probably do not cover some 

module to module interaction or timing related 

problems. These problems are manifested in failure 

logs like unwanted resets, and strange system behavior 

in some situations. 

Therefore there was a need for new tests that try to 

catch the cause of these problems. 

 

3.1. Failure model 
 

The failure model of such a real-time embedded 

system [8] can be divided into sequential and 

multitasking real-time behavior based failures shown 

on Figure 2.  

The feedbacks and experiences have shown that the 

test coverage for sequential failures is high enough. 

Traditional white box and regression tests catch these 

types of failures, but the multitasking real-time failure 

detection is not perfect, so it should be improved. 
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Figure 2. Failure model 

 

There are three categories of such multitasking and 

real-time failures: the Timing failures, Synchronization 

failures and Interleaving failures.  

In our work we will focus on the Timing failures, 

because the static analysis in the white box test phase 

leaves these one uncovered the most. 

 

3.2. Possible solutions 
 

The most foundational thing of Timing failure 

detection is the static prediction or runtime 

measurement of software task WCETs (Worst Case 

Execution Time). These execution time predictions or 

measurements can be used to calculate the worst case 

response time for each task, and therefore analyze 

whether the system will be able to behave in real-time 

in every situation by keeping the schedule of the tasks. 

Real-time systems out of their schedule can show 

symptoms like unwanted resets and strange behavior 

for a short time. 

Static calculation of execution times and WCET is 

not a trivial task and many articles discuss its problems 

[9]. A recent survey is a good introduction to these 

methods [10]. The two main sources of WCET 

deviation is from low-level hardware optimization 

features, and high level path dependencies. Low level 

features are for example the effects of caches and 

pipelines. These dependencies have an impact on close 

neighboring blocks and in the general case the 

dependency decreases for more distant blocks. High 



level features are for instance the data dependent paths 

and mutually exclusive paths.  

There are many tools regarding this topic, and many 

of them are commercially available. Some tools use 

pure static analysis of the program, while other tools 

combine static analysis with dynamic measurements of 

the execution times of program parts. Unlike most 

applications of static program analysis, WCET tools 

must analyze the machine code, not (only) the source 

code. This means that the analysis depends on the 

target processor, so WCET tools typically come in 

several versions, one for each supported target 

processor or even for each target system with a 

particular set of caches and memory interfaces. Some 

parts of the machine code analysis may also depend on 

the compiler that generates the machine code. A typical 

example for such compiler dependency is provided by 

Hitex: four compilers (GNU GCC, and three 

commercial compilers) were compared, with the same 

processor (LPC2294 an ARM7TDMI core processor) 

at the same speed, with the same benchmark and even 

the commercial compilers were differing more then 

30% in their execution time results [11]. 

Another way of execution time verification is a 

purely measurement based solution, when the timing 

parameters are acquired during run time testing. 

However this is theoretically simpler, but requires code 

instrumentation and its coverage is limited by the run 

time test (only execution paths affected by the run time 

test can be inspected). 

 

3.3. Restrictions 
 

To make our work the easiest to apply in the future, 

in accordance with our industrial partner we decided to 

complement the existing grey box tests with a timing 

failure detector property. Therefore we used a 

measurement based approach that can be integrated 

into the test environment described in section 2.  

Our main goal is to perform this new test property 

as “background” verification during each traditional 

regression test. This way we can increase the test 

coverage without causing additional costs by 

lengthening the test process. The term “background” 

means the following: during regression tests, this new 

test simply measures some important features, by using 

the traditional diagnostic channels (this way do not 

cause significant additional load to the system under 

test), and at the end of the traditional test, a statement is 

given highlighting the noticed timing failures.  

 

4. Measurement 
 

The first phase of planning the timing failure 

detector is the selection of features and parameters to 

be measured during the regression tests. A detailed 

knowledge about the software architecture of an 

automotive ECU is needed for this decision. The 

architecture of the system under test can be used also to 

create a model or simulation of it. This is important, 

because in many cases the complexity of the ECU 

software is too big for trying out theories and the cost 

and time schedule of the industrial test stands could 

also be a bottleneck of experimentation. 

 

4.1. System model 
 

An ECU or TCU can be treated as a general purpose 

real-time embedded system with the software modules 

shown on Figure 3 (this figure is based on OSEK COM 

specification, with some modification).  
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Figure 3. ECU software architecture 

 

From the measurement and instrumentation point of 

view the RTOS model of the system is the most 

important. Specifications for automotive RTOS support 

are described first in the OSEK/VDX OS [12] 

standard, which is used as a base of AUTOSAR 

specifications for operating systems. Most of the 

operating systems used in ECUs are conform to this 

standard.  

The RTOS model of a usual ECU can be described 

as:  

 

• Fixed priority, preemptive scheduling. 

• Fixed task periods with 2.5ms, 5ms, 10ms, 

20ms, 30ms, 50ms and 100ms tasks. 

• Tasks with lower period have the higher 

priority. 

• Interrupts have short and predictable 

execution. 

 

The worst case response time of the tasks can be 

calculated accordingly to the Deadline Monotonic 



Analysis [13] as it is can be done in many automotive 

OSEK/VDX OS based system [14]. 

Deadline monotonic analysis (DMA) is a technique 

to calculate the worst-case response time of tasks. It 

can be used to ensure that all tasks will meet their 

deadlines, or in other words, that the system is 

schedulable. Standard notations of DMA are shown on 

Figure 4.  
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Figure 4. DMA notations 
 

Ti and Di can be derived from requirements. While 

the value of Ci is need to be measured.  

 

4.2. RTOS instrumentation and measurements 

 
In some RTOS the built in instrumentation can 

provide the value of Ci, however it is not a trivial task, 

because it requires low kernel level instrumentation. 

Our industrial partner’s RTOS hasn’t got such 

instrumentation, and they refuse to make any such deep 

kernel level modification on their RTOS, because of its 

high testing cost. The built in instrumentation of that 

RTOS can provide the value of Ri, the number of 

interrupts in the last 2.5ms time period and the 

processor load in the last 100ms period, so we should 

use these values.  

Unfortunately the value of Ri alone is useless, 

because a low Ri value can cover a high Ci value and 

vice versa as shown on a measurement results of Figure 

5. But, complementing the value of Ri with the task end 

timestamp the scheduling can be restored, and an 

estimation for Ci can be given. 

The measurement of task end timestamp is very 

simple, it does not require deep kernel level 

instrumentation, and our partner accepted to do this 

implementation.  

The measured parameters have the resolution of 

1µs. This resolution is enough for timing failure 
detection, and ensures that the amount of data to be 

transferred do not overload the communication bus. 
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Figure 5. Ri and Ci relationship 

 

4.3. Test system 
 

The development of the Timing failure detector is 

done in three stages. The first stage is to try out the 

methods in a Matlab based scheduler simulator. The 

second state is to verify the theories in an ECU 

simulator, and the third last stage is to apply it on a real 

ECU. 

The ECU simulator is based on the STM32F107 

ARM Cortex M3 based MCU, with 72MHz of CPU 

clock speed, 256kbytes of Flash, and 64kbytes of 

RAM, and 2 CAN channels. The properties of this 

ECU simulator is about the same as a mid or low range 

automotive ECU. We use the Vector CCP stack on this 

card as diagnostic communication. Vector CANape is 

used as measurement software, and we substitute the 

Laboratory car with a National Instruments cRIO 

modular hardware. Our test system just likes the one 

shown on Figure 1, but much simpler. Our ECU 

simulator internally provides the skeleton of the 

software layers shown on Figure 3. We can use three 

types of RTOS make our tests RTOS independent. 

These three RTOS are FreeRTOS, µC-OS and eCOS. 
The instrumentation described in 4.2 is implemented 

for all of these RTOS, but to verify our theories for 

some RTOS we added more sophisticated 

instrumentation too. 

 

5. Worst case task response time 

calculation 
 

Timing failure detection is based on the calculation 

of tasks WCETs. Measurement based techniques for 



task WCET estimation were evaluated in our Matlab 

based simulator, then in our test system. The first step 

of task WCET estimation is to estimate the execution 

time (Ci) for every task in every period. This is done by 

using Ri and other measured parameters.  To estimate 

Ci from Ri a reconstruction of scheduling is needed. 

 

5.1. Reconstruction of scheduling 
 

From the known priorities and periodicity of tasks, 

the measured response time and from the end of task 

time stamps the scheduling can be restored. This 

statement is true with 2 restrictions.  

The first is that we do not take into the account the 

effect caused by priority inversion, where the higher 

priority tasks are blocked by a lower priority one. This 

restriction can be done in our cases, because in such 

systems it is usually prohibited to use blocking task 

synchronization methods that can lead to priority 

inversion. 
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Figure 6. Restored scheduling vs. original 
 

The second is to neglect the effect of the interrupts, 

which is a much harder problem to solve. Figure 6 

shows an example for scheduling restoration, without 

compensating the effects of interrupts. 

 

5.2. Effects of interrupts 
 

In most of the companies developing embedded 

software products for safety critical systems, there are 

guides for handling and using interrupts. These guides 

according to safety standards [15] usually make more 

and more restrictions for the use of interrupts as the 

safety level of the product is become higher. For 

example, for a SIL (Safety Integrity Leve) 1 or 2 

product it is only a recommendation to use less 

interrupt then a normal one, for a SIL 3 product it is a 

hard rule to use as small amount of ITs as possible, and 

handle events with periodic polling instead. This means 

that in safety critical systems we can assume only a few 

interrupt sources. 

 Interrupt modeling has two main parts to discuss. 

The first is the execution time prediction of an 

interrupt. The second is the distribution of interrupt 

occurrences in time. 

 The execution time prediction of interrupt can be 

based on statistical WCET calculation results. 

Interrupts in safety critical systems generally has only a 

few high level execution time dependences, and mainly 

the low level ones like IT jitter, pipeline flush etc. 

dominates. Our survey and measurements made on 

different interrupt sources in the test system shows that 

we can suggest an extreme value probability 

distribution for interrupt execution time modeling.  
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Figure 7. CAN powertrain IT distribution 

 

The second problem is to specify the distribution of 

interrupt occurrences in time. Some of the few IT 

sources will be periodic for a sure, like RTOS heart 

beat timer, but most of them will be unpredictable. 

However the events like message receiving interrupts 

of communication interfaces seems to be unpredictable 

and random, but that is not absolutely true. In 

automotive systems most of these events tend to be 

periodic, even when using an event base 

communication like CAN. For example in normal 

communication mode every CAN message is 

transmitted periodically, but in non TTCAN networks 

these are not synchronized. 

Figure 7 shows an example for interrupt occurrence 

distribution in a 500kbit/sec powertrain CAN network. 

It is impossible to create an unequivocal probability 

distribution for every interrupt sources. Each source 

should be modeled separately. 

 



5.4. Statistical worst case Ri calculation 
 

Usually Deadline Monotonic Analysis (DMA) is 

used to calculate the worst-case response time of tasks. 

DMA is using the following iterative formula: 
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is the total interference from all higher-priority 

tasks, and hp(i) is the set of tasks with priority higher 

than i. 

In this formula the worst case task execution times 

should be used as Ci and Ck parameters. In our example 

it only can be done by using probability distributions in 

the following way:  

 

1. Compensate the IT effects for every task i 

from the restored scheduling to get the 

probability distribution of Ci. 

2. Estimate worst case Ci distribution for every 

task. 

3. Make the iterative computation with the 

probability distributions of tasks worst case Ci 

and with the probability distribution of 

interrupt effects. 

 

There are suggestions for statistical worst case 

response time calculations in the literature [16],[9] but 

generally response time calculation is a very difficult 

NP-hard problem [17]. To make that problem harder in 

this situation, we should use uncertain arguments, 

because as presented in section 5.2 the effects of 

interrupts generally cannot be modeled correctly by 

probability distributions, and in the procedure above 

we should use the IT models twice. As a conclusion, 

the results of the statistical worst case response time 

calculation can be given numerically, but these results 

could lead to a very long tail and imprecise probability 

distributions at the end. As we studied it, these 

computation doubtfully could give distributions, where 

the probability for timing failure is lower than 10
-8
 or 

10
-9
 (general requirement for such systems) for any test 

case. Therefore these calculations would indicate a 

huge value of false positive detections, and therefore 

the test would be useless. 

The results of the probability based worst case Ri 

calculation could be improved greatly, by applying 

detailed IT measurements. This detailed IT 

measurement should provide the type of the IT, the 

start time and the end time of it. Therefore it would be 

possible to restore the scheduling with the effect of 

interrupts, including IT nestings too. From this restored 

scheduling the WCET of tasks can be predicted in a 

more exact way, and the worst case response time 

calculation could use a better IT model derived from 

the measurements. 

This approach would be the best way for timing 

failure detection, but the measurement communication 

bandwidth of this solution is very high. In the most 

optimistic calculations for data transfer, we can assume 

2 bytes pro ITs to log (low, 10µs resolution start and 
stop timestamp in a 2.5ms period), and 2 ITs pro 1ms 

(a normal automotive system has more than 2 ITs pro 

1ms). This very optimistically calculated data transfer 

indicates more then 15% load, without any other 

measurements to a 500kbit/sec CAN network. In 

section 2.3 we specified that up to 10% of diagnostic 

communication load is allowed for our test in a 

traditional environment. So as a conclusion this method 

cannot be applied to complement traditional Grey box 

tests. 

 

6. Simplified, low data rate timing failure 

detection 
 

Section 5 has shown that statistical worst case 

response time calculation cannot be used in the Grey 

box test environment introduced in section 2.2. The 

question is, whether there is any way to use the 

measurements shown in section 4.2 to make a statement 

about the timing healthiness of the system. 
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Figure 8. Overestimated task execution times 



 

Our suggestion is to use the reconstructed 

scheduling shown in section 5.1, but without trying to 

remove the effects of interrupts from it. The result is a 

set of overestimated executing times for every tasks. 

Figure 8 shows a sample relation between this 

overestimated execution time, the task response time 

and real execution times. 

There is a guarantee that the maximum of these 

overestimated execution times will be higher than the 

worst case execution time in the test cycle. These 

overestimated worst case execution times could be used 

for the DMA algorithm, without taking into the account 

the effect of the interrupts, because the worst case 

overestimated execution times already contains the 

effects of the ITs. But there is no guarantee that the 

result of this calculation will be the realistic worst case 

situation, because the maxima of the overestimated 

execution times not definitely contain the maxima of 

interrupt interferences. Therefore the possible 

differences between the interrupt effects embedded into 

the overestimated execution time maxima, and the 

worst case interrupt load should be compensated. 

Our suggestion is not to make this compensation for 

task to task, because that procedure would not fit to the 

mainly periodic nature of interrupt occurrences. So 

instead of compensating the possible interrupt 

differences to task to task we suggest to take this 

compensation at the system schedule level. To do this 

we need a prediction for the schedule ability of the 

tasks, without calculating the worst case response times 

with DMA.  

The so called Liu and Layland bound can be used 

for this purpose [18]. This bound specifies that a 

system consists of n tasks is schedulable if the sum of 

the maximum utilizations of the tasks, denoted as U, 

satisfies the inequality: 
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The Liu and Layland bound gives a sufficient and 

hence conservative condition. A system may be 

schedulable though its maximum utilization exceeds 

this bound.  

Our suggestion is to use this conservative condition 

and complement it with the worst case IT difference: 
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Id is the difference between the maximum IT load 

measured during the test, and the minimum of IT loads 

of the periods, which are used for the calculation of U. 

A period is used for the calculation of U if an 

overestimated task execution time is selected from it. 

The IT load is calculated by subtracting the sum of 

overestimated task execution times plus the CPU load 

from the period of time the CPU load was measured 

(usually it is synchronized with a low period task like 

the 100ms task). This IT load is therefore the time 

when the CPU was handling interrupts during the 

execution of the idle task. 

Our experiences have shown that this is a really 

conservative higher bound, therefore if the calculated 

utility of the system pass this, then there is a very low 

probability to any timing failure remains in the 

measured test case. 

The diagnostic communication load of this solution 

is not more then 8% with using CCP messages in a 

500kbit/sec CAN network. Therefore it can be applied 

in traditional Grey box tests. 

 

7. Using timing measurements in regression 

tests 
 

Methods presented in section 5 and 6 do not take 

into account the type of the tests. These sections only 

deal with the measured values and their applicability; 

however the term regression test could involve features 

that can be beneficial for failure detection. 

Many times regression tests are made after a 

modification of a software system that previously had 

been marked as reliable [2]. This modification can be a 

change of a parameter or adding a new function to the 

system, but the important thing is that there was a 

previous version marked as reliable. Therefore, if a 

timing data set of a good version or versions can be 

collected and learned by the checker, then many 

potential errors can be uncovered by checking. The 

question is whether there are any differences between 

the timing characteristic of the new software version 

and the previous ones. 

 

7.1. WCET deviations between tests 
 

Collected information form the previous 

measurements can be used to check the differences 

between the new and the stored overestimated worst 

case execution times. It is very important to match 

comparable test cases. Thus the tester should contain a 

large set of data for every regression test cycle with 

every hardware version and every major software 

version. 

The collection of such data set is a very time 

demanding one, but it can be done during the normal 



tests, and this comparison can be an efficient way to 

catch problems. For example in a situation where the 

part of a software system is tested, there are probably 

no deadline violations, but a significant increase in an 

execution time compared to a previous version could 

indicate some programming faults. 

  

7.2. Executing time deviations in different 

operating modes 
 

Automotive ECUs have many operating modes. 

Some of them are listed in section 2.1. Task execution 

times statistics highly depend on the operation modes. 

Execution times much smaller then the global worst 

case execution time could indicate serious errors in 

some operating modes. A real-life precedent for this is 

an incorrect behavior in power-safe modes, which lead 

to the discharge of the battery. Therefore it is important 

to go beyond the global worst case execution time test. 

The checker should perform an execution time check 

for every operating modes of the system separately. 

 

7.3. Executing time clustering  
 

Not only the worst case execution times can contain 

information, but the change of the execution time 

parameters during a test flow also can be interesting. 

Therefore it is beneficial to try to make clusters form 

execution time measurements. These clusters represent 

the major execution paths of the system software, 

however an exact relationship cannot be given between 

them (many paths can have similar execution times). 

These clusters can be used to check, whether the 

system during a test flow tends to be executing the 

same functionalities as it was done in the previously 

good releases. Significant differences between the 

execution paths can also signal software faults. 

 

8. Conclusions 
 

Our paper shortly described the testing environment 

and traditional Grey box tests used for automotive ECU 

verification. We introduced the potential ways of 

complementing these traditional tests with 

measurements essential for timing failure detection. In 

section 5, we have presented the problems of restoring 

the scheduling of the system that essential for acquiring 

the execution times of tasks. The difficulties of 

interrupt modeling are also discussed. Section 5.4 has 

shown a probability based approach for compensating 

the effects of interrupts, but our studies has shown that 

the amount of measured information with traditional 

diagnostic communication based solutions is not 

enough to give a usable probability distribution based 

solution for the timing failure detection problem. 

Section 6 has shown a highly simplified low data rate 

solution for timing failure detection. This method can 

be used in the traditional test environments and 

diagnostic communication. It can give a high 

probability for signaling situations from the measured 

data that can lead to timing failure. Finally section 7 

has introduced the possible further applications of 

timing measurements in regression test. These 

applications require a huge timing data set from 

reliable applications, and based on this data set 

differences can be detected in new software versions. 

The results and theories presented in this work have 

been evaluated in the test system presented in section 

4.3, and preliminarily studies have been done for some 

of the methods by using data set from real automotive 

regression tests. The actuality of this problem is shown 

by a recent publication of Vector Informatics showing 

their solutions for timing analysis [19].  

 

9. Future work 
 

The theories presented in this paper are already 

evaluated in the test system, but many more 

measurements, and failure detection case studies are 

needed to presents their applicability in real situations. 

Adopting the test from the test system to a real 

environment also provides challenges.   

 

9.1. Modern tracing techniques 
 

Section 2.3 has presented the test interfaces used in 

Grey box tests. Dual memory interfaces are getting 

more and more obsolete for such tests, but most of the 

modern microcontrollers provide ways for high data 

rate nonintrusive data and instruction tracing.  

A typical example for such embedded trace support 

is the CoreSight Debug support and Embedded Trace 

Macrocell of ARM [20]. These hardware blocks 

provide nonintrusive debug and trace interface even in 

the lowest end 32bit microcontrollers. On-the-fly 

debugging, integrated data trace and optional 

instruction trace are the main features of these blocks. 

Data trace provides features like program counter 

sampling, event counters, and interrupt execution 

tracing with timing statistics. Instruction Trace enables 

analysis of execution history, and can be used for code 

coverage, and performance analysis. These hardware 

blocks also enable the interfacing to the internal 

memory and peripherals in a nonintrusive way (AHB 

access port for ARM Cortex cores), therefore variables 

specified in ASAP2 files can be acquired and modified 



in a same way as it its done in a dual port memory test 

interface case. 

The CoreSight Debug support and Embedded Trace 

Macrocell are ARM specific solutions but the IEEE-

ISTO 5001-2003 Nexus port also specifies similar 

goals, so in the future most of the microcontroller will 

have similar functionalities. 

 Another good example for the need of such data 

trace support is the TMS570 of Texas Instruments. The 

TMS570 is a state of the art dual core ARM Cortex-

R4F based floating point MCUs that meets 

IEC61508/SIL3 safety standards and released in 2009. 

These series of microcontrollers is primary designed 

for safety critical applications, with redundant dual 

core CPU and memories with error correcting 

capabilities. The TMS570 is enabled with a CoreSight 

debug support, but beside this support it provides a 

RAM trace port (RTP) module, which allows to do 

data trace of CPU or other master accesses to the 

internal RAM and peripherals with up to 133MBytes/s 

transfer rate.  

 

9.2. Applying tracing techniques 
 

Currently the diagnostic communication based 

testing is the most widespread used. Therefore it is 

important to give solutions for that low data speed 

interface, however unquestionably the trace hardware 

interfaces introduced above will be used in future 

testing environments. From our point of view these 

interfaces enables more precise measurements, thus the 

probability based timing failure detection approach 

presented in section 5.4 can be applied. These tracing 

methods also could have great use in the checks 

presented in section 7. For example, by using precise 

interrupt measurement a knowledge base for every 

interrupt type can be built and therefore the worst case 

interrupt situations could be predicted much more 

realistically, then general probability distributions.  

We are about to improve our test system with such 

tracing tools, and adopt our methods for this 

technology. 
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