
Trace and debug port based watchdog processor

Balázs Scherer

Department of Measurement and Information Systems
Budapest University of Technology and Economics
H-1117 Budapest, Magyar Tudósok krt. 2. IE444

scherer@mit.bme.hu

Gábor Horváth

Department of Measurement and Information Systems
Budapest University of Technology and Economics
H-1117 Budapest, Magyar Tudósok krt. 2. IE444

horvath@mit.bme.hu

Abstract—Novel architectures and processors are designed to

satisfy the needs specified by functional safety standards, like

IEC 61508 and ISO 26262. An example for this devices is the

TMS570 from Texas Instruments, which is a SIL3 (Safety

Integrity Level 3) capable microcontroller. The question is

whether a specialized hardware alone, like the TMS570 is enough

for reaching safety goals or additional efforts should be done.

This paper presents an idea of trace and debug port based

watchdog processor that increase the safety for systems designed

with traditional microcontrollers or with modern dual core safe

ones. The approach presented is using the debug and trace

hardware blocks present in nearly every 32bit microcontrollers

introduced into the market in the last 5 years. The paper shows

the benefits and capability of such debug and trace hardware

based watchdog control. We also introduce the bottlenecks of this

approach and make suggestions to eliminate these, by making

minor modifications to the existing trace blocks of the ARM

CoreSight architecture.

Keywords-component; embedded; trace; real-time; ARM

Cortex; CoreSight; diagnostics.

I. INTRODUCTION

Many embedded electronics devices have safety critical
functions. Usually a general purpose microcontroller has about
a more than 100 FIT (Failure-In-Time) failure rate. Therefore
traditionally some kind of system level strategy is needed to
reach the higher SIL levels like SIL2 or SIL3. These strategies
include hardware, software, information and time redundancy,
like dual processor architectures, watchdog processors,
software self tests and so one. Devices with such redundancy
can provide the required fail-safe operation, and in case of
failure they can go into a safe state (like limp-home mode in
automotive devices). 5 years ago embedded market statistics
have shown a rapid change from 8 bit microcontrollers to 32
bit ones, and currently there is no question that 32 bit micros
dominate the market. This change has a significant effect on
the safety critical developments. In this chapter we introduce
the latest trends of the microcontroller market focusing on their
effects to the safety critical developments.

A. Microcontroller trends

In our work we focus on the ARM Cortex core based
microcontrollers, because these devices have the leading edge
in the global microcontroller market [1]. ARM has two core
series which is important from our point of view the low speed
Cortex™-M core series (M0, M3, M4) for general purpose

microcontrollers, and the Cortex™-R core series which is
designed for real-time and safety critical systems, with optional
floating point support.

B. Low-end 32 bit microcontrollers

From 2003 one of the significant trends of 32 bit
microcontroller evolution was to develop devices, which are
price and power consumption compatible with 8 bit
microcontrollers. The flagships of these trends were the low
end Cortex™-M3 core based devices, like STMicroelectronics
STM32F100/101/103 series, but the breakthrough had come
from to the Cortex™-M0 core, which is a Von Neumann
architecture based and therefore simpler one comparing to the
Harvard architecture based M3. The first Cortex™-M0 core
based microcontroller series had come from NXP at 2009, and
as a conclusion we can say that there are tiny 32 bit
microcontrollers with up to 50MHz CPU frequency and up to
32Kbyte Flash and 8 Kbyte RAM in the below $1 price range.

C. High-end 32 bit microcontrollers with innovations for the

safety critical market

Texas Instruments about 5 years ago announced a
development of a microcontroller that is capable for IEC 61508
SIL3 level hardware safety without any additional redundancy.
The TMS570 series is now available and primary targets
automotive and transportation market [2]. The TMS570
devices provide system-wide protection through seamless
support for error detection from the processor, through the bus
interconnect, and into the memories. The TMS570 family
integrates dual Cortex™-R4F processors in lock-step mode (F
means the core is equipped with a floating point unit), working
at 160MHz. The two CPUs operate cycle delayed out of sync at
input and then resynchronized for output compare, which is
done by the Core Compare Module. The two CPU also has
separate clock trees and they are flipped to each other to
prevent physical common mode failures. The TMS570 also
provide a hardware aided CPU self test and its memories are
equipped with an ECC (Error Correcting Code). The TMS570
also has an Error Signaling Module (ESM) to manage the
various error conditions on the TMS570 microcontroller. Any
error condition can be configured to drive a dedicated device
pin called ERROR to low state, which can be used as an
indicator to an external monitor circuit to keep the entire
system in a fail-safe state. Other semiconductor companies like
Freescale [3] and Renesas (probably by the influence of
TMS570) also introduced their dual safe core products.

D. Problems of safe microcontrollers

The TMS570 and other dual core safe microcontrollers
provide reliable and cost effective controller platform for
modern electronics comparing to the traditional dual
microcontroller based safe architectures. But these safe micros
still address just a part of the problem, what was handled by the
dual microprocessor based architectures. The problem not
really addressed is the failures come from the software. The
dual safe core is not protected against software run time
failures, where the dual microcontroller architecture with
different software and development platform for each
controller can provide some sort of software failure protection.
So this problem should be handled, because despite the
software development standards and rules like AUTOSAR,
MISRA-C, still there will be faults in the software. A
traditional solution of this problem is some kind of watchdog,
or watchdog processor.

II. TRACE, AND DEBUG PORT BASED DIAGNOSTIC

A. Software runtime failure detection

A more sophisticated approach of software runtime failure
detection then a simple watchdog is the watchdog processor
(WDP). Where, a simple watchdog is many times no more than
a timer or windowed timer based reset. The watchdog
processor has the ability to see inside the guarded device, and
make statement about its healthiness. The watchdog processor
needs some information about the inputs, outputs, and the
internal state of the guarded device. The WDP approach
provides high failure coverage, but it is also a costly solution.
A complete I/O and communication monitoring requires much
resource and a good old fashioned watchdog processor is not
much less then a redundant controller.

The question is how to implement a WDP in a simpler way,
which requires much less resource (I/O pins, peripheral, and
therefore simpler microcontroller), then a traditional one, but
still able to see inside the guarded device and make a statement
about its healthiness.

A good solution could be the way that used in automotive
ECU grey box and HIL (Hardware in the Loop) testing. This is
a diagnostic protocol based approach, where diagnostic
protocols like CCP (Can Calibration Protocol), XCP (Universal
Measurement and Calibration Protocol Family), KWP2000
(Keyword Protocol 2000) and UDS (Unified Diagnostic
Services) are used to monitor the internal memory, and through
that the state and healthiness of the ECU. This is a possible
solution to the problem, but also has many drawbacks: the
diagnostic channel has a very limited bandwidth, and such
diagnosis cause a significant load to the main processor. Due to
the drawbacks this way in not useable, but the main idea of
such diagnosis, which means that the WDP checks the internal
memory and state of the ECU and from these information
makes the statement for healthiness of the system is good.
Therefore the question is whether this memory and state
checking can be done in a non-intrusive and cheap way?

B. Suggestion: Trace port based diagnostic

Modern 32 bit microcontrollers includes enhanced debug
features, the ARM Cortex™ core based devices include the
ARM CoreSigh on-chip trace and debug solution, where many
others architectures implements the IEEE-ISTO 5001-2003
(Nexus) standard. These enhanced solutions provide non-
intrusive real-time memory access without stopping the CPU.
They also offer many execution trace opportunities like
program, data, and ownership trace. These new debug features
can provide the necessary non-intrusive diagnostic channel for
the WDP. As mentioned before we focus on ARM core based
solutions, therefore in this chapter we introduce the CoreSight
architecture, and its capabilities.

C. The CoreSight on-chip trace and debug system

The CoreSight architecture [4],[5] includes many blocks,
and microcontroller designers can chose to use all of them or a
subset of it. The most important blocks are the following:

Debug ports: Most of the Cortex debug systems support
two types of debug host interfaces. The first one is the JTAG
and the second one is a new SPI (Serial Peripheral Interface)
like interface called Serial-Wire. The SW interface reduces the
number of required signal lines to two.

AHB-AP: Advanced High-Performance Bus Access Port
(AHB-AP) acts as a bus bridge to convert commands from the
debug port into AHB transfers. AHB is the main bus system
used in ARM core based microcontrollers. Therefore the AHB-
AP allows access to the memories, private and system
peripherals of the microcontroller. An external device can
monitor or modify the state of the memory or peripherals of the
microcontroller in a non-intrusive without stopping the core.

The trace information in the CoreSight architecture is
usually generated form three trace sources the Embedded Trace
Macrocell (ETM), the ITM (Instrumentation Trace Macrocell),
and the Data Watchpoint and Trace (DWT) blocks. The Trace
Port Interface Unit (TPIU), formats the information form these
sources into packets, and send it to an external trace capture
device.

The ITM has a capability to provide a “printf” style consol
messages interface to the application software. The ITM also
transfers the messages of the DWT block, and what is very
important that the ITM can generate timestamp packets that are
inserted into a trace stream.

The DWT has a number of functionalities: among other
things it can provide PC sampling at regular intervals and
Interrupt events trace. The DWT also includes several counters
for measuring statistical parameters like Interrupt overhead and
Sleep cycles. The DWT also has the functionality to be used as
a trigger of ETM. The comparators of DWT can be
programmed to compare either data addresses or program
counters, and on match trigger the ETM module.

The ETM block is used for providing instruction traces. To
reduce the amount of data generated the ETM does not always
output exactly what addresses the processor has
reached/executed. It usually outputs information about program

flow and outputs full addresses only if needed. The ETM can
use comparators in the DWT to generate trigger events.

The trace packets are emitted by the TPIU. The TPIU
usually supports two output modes, a clocked mode, using a
parallel data output port (up to 4 bit width in the case of
Cortex™-M3) and a SWV (Serial Wire Viewer) mode, using
single-bit UART output. SWV mode reduces the number of
output signal to 1, but the maximum bandwidth for trace output
is also be reduced, therefore, when instruction trace is required,
the clocked mode is suggested, but for a simple data trace
and/or event trace the SWV mode is usually enough. The
baudrate of the SWV output can be configured in a flexible
way, very similar to configuring a standard UART peripheral’s
baudrate.

III. SUGGESTED ARCHITECTURE

A. Suggested architecture

Chapter II had shown that, in a lowest resource
combination an external WDP can monitor a microcontroller in
a non-intrusive way with CoreSight on-chip trace and debug
system by using only 3 pins. Two pins for an SPI like SWD
communication and one pin for a one direction SWV UART
communication. Chapter I. had shown that there are tiny under
$1 cost 32 bit microcontrollers that can be used as WDP at a
same cost as an 8 bit micro, but with 10 times the performance.
Therefore our suggestion is for a future safety critical system is
a system with trace and debug port based watchdog processor
“Fig. 1.”.

Cortex M0

or

Cortex M3

based WDP

Dual core safe MCU

or single core MCU

Bus matrix

Core1

Core2
optional

Memory

Flash

SRAM

Fast

peripherals
DMA

Bridge

P
e
rip

h
e
ra
l b
u
s

p0

p1

p2

pn

SWD

DP AHB-AP

ETM

DWT

ITM

TPIU

SVW

UART

SWD

2 wire

Figure 1. Suggested architecture

B. Selecting inputs for the trace and debug port based WDP

When selecting the inputs of the WDT the main question is
what type of information is needed for the WDP to make a
statement about the healthiness of the system?

The healthiness of the system is mainly depends on its
internal state and the state of their inputs and outputs. The trace
and debug port based WDP can check theses states by
periodically polling the memory variables regarding these
properties or by making watch conditions to these variables for
the trace port (limited numbers of such watch points are
available). The polling based approach is tends to be enough

for basic state checking. This approach does not require much
communication bandwidth. As an example: reading the 32 bit
values of 100 variables in every 10ms (which is a normal
reaction time in automotive embedded systems) require less
then 1 Mbit/sec communication speed on the SWD port. Such
communication speed can be easily served by a Cortex M0
core based micro running at 50 MHz.

However this method is promising, but only a simplified
system model can be used for checking the input, output and
internal state relationships of the guarded system to do not
exceed the program memory limit of the simple WDP.

Another complementing and more universal method
suggested by us is software healthiness detection. The failure
model of embedded real-time software can be divided into
sequential and multitasking real-time behaviour based failures.
Experiences have shown that the test coverage for sequential
failures is rather high. Traditional static analysis and white box
tests catch these types of failures and the input, output and state
polling method also provide coverage for these types of
failures. The multitasking real-time failure detection is
generally a harder problem. We suggest that the WDP should
collect information, which helps detecting these failures, which
usually appear as transient short term value changing or
response time violations. There are three categories of such
multitasking and real-time failures: the Timing failures,
Synchronization failures and Interleaving failures [6].

These failures are typically related some how to the
embedded RTOS (Real-Time Operating System). As a starting
point to what kind of failures present and should be detected it
is a good idea to survey existing embedded standards related to
the RTOS layer. Currently the most widespread standard
related to the RTOS layer is the AUTOSAR-OS [7].
AUTOSAR (AUTomotive Open System ARchitecture) is an
open and standardized automotive software architecture, jointly
developed by automobile manufacturers, suppliers and tool
developers, but there is a purpose to propagate the AUTOSAR
to other industrial systems too. AUTOSAR-OS standard gives
definitions to the terms used by operating systems developers
and users. It also describes the ways of protection what should
be offered by the OS. We have analysed this standard and our
suggestion is to use these protection strategies, because they
describe most of the possible failure in an operating system.

Many of the rules are regarding to the timing protection. An
embedded real time system needs safe and accurate timing
protection to ensure that Tasks and ISR-s can meet their
respective deadlines. Our experiments made in a Cortex M3
based system with FreeRTOS a commercially available RTOS
has shown that the trace and debug port based WDP has the
capability to track the scheduling of guarded system by using
the event tracing feature of the DWT unit. Therefore it is able
to check the operation of the AUTOSAR-OS protection or
provide such protection for a non AUTOSAR system.

Other protection required by the AUTOSAR OS is the
Memory protection. The memory protection consists of three
parts the stack monitoring the data and code segment
protection. Our experiments with the Cortex M3 and
FreeRTOS based test system also has shown that the trace

features are capable to monitor the stack usage of the task, and
therefore signal stack faults.

C. Comparing the suggested architecture to existing ones

Out experiments has shown that the trace and debug port
based WDP has the capability to monitor the internal state,
input and outputs of the guarded device, and trace the software
execution of it. Figure 2 compares this suggested architecture
to the existing architectures.

Method diagram Advantages Disadvantages

relativly low cost

Safety depend on the

capabilities of the 8/16 bit

micros

SIL3 reacable Very costly sollution

Increased complexity

costly secondary micro

extra board space

costly and complex

secondary software

SIL3 reacable
same performance as one

mcu

vulnerable for software

failures

reduced software

complexity

vulnerable for comon mode

failures

less costly then the

dual microcontroller

External device for error

signaling output handling

same safety as with

traditional checker

less safe then the dual

microcontroller or dual core

sollution.

diverse hardware

Non intrusive

diagnostic

SIL3 reacable
same performance as one

mcu

reduced board space

comparing to the dual

microcontroller

more costly then a dual core

safe microcontroller

different hardware

platform

WDP needs stand alone

software

less vulnerable for

software failures then

dual safe core

less costly then the

dual microcontroller

Single 32 bit

microcontroller with

Trace and debug port

based watchdog

processor

Dual core safe

microcontroller with

Trace and debug port

based watchdog

processor

Potential for

redundancy

different hardware

platform

Dual core safe

microcontroller

reduced board space

diverse hardware Diagnostic can be intrusive

Traditional dual

microcontroller

sollution

Single 32 bit

controller, with

traditional 8/16 bit

checker

CPUWDP

CPU 1 CPU 2

comp

CPU 1 CPU 2

comp

CPU
Trace

& debug

WDP

3 w ire

CPU 1 CPU 2

comp

Trace
& debug

WDP

3 wire

Figure 2. Comparing the suggested architecture to existing ones

Our experiments has shown that the trace and debug port
based WDP has advantages over the traditional WDP
approaches, and can complement the dual core safe micros to
provide a safety level very similar to the one provided by the
dual microcontroller approach, but at lower price.

Another future possible and suggested use of this concept is
to integrate the Cortex M0 core based WDP to the safe
microcontroller. Such integrated checker could further reduce
the cost significantly. A good example for similar integration is
the LPC4300 series released at 2010 by NXP. LPC4300 series
has a complex Cortex M4 main processor with DSP like
instructions and a simple M0 core for peripheral control.
However the function of this core integration is different but
that is very important that this whole system is accessible at a
$5 price range, which means adding an additional M0 core to
the microcontroller system do not affects the price
significantly. Therefore adding a Cortex M0 core based
checker block to the TMS570 for example would not modify
the chip’s price significantly.

IV. CONCLUSIONS

This paper has shown the novel architecture of the trace and
debug port based watchdog processor. We introduced the
capability of the debug and trace ports exists in modern
microcontrollers and their suggested use for watchdog interface
purposes. Our experiments made with our Cortex M3 based
test platform have proven the concept, and on Figure 2 we
presented the possible advantages of this architecture
comparing to the existing ones.

However this is a promising architecture, but there are still
many questions that need to be answered. The first among
these is the detailed internal behaviour of the WDP. The
AUTOSAR standard based analysis proved itself useful in our
experiments, but further analysis and experiments needed in
this field.

Our experiments also highlighted some defects of the ARM
CoreSigh trace port implementation. One of these defects is
that the TPIU formatting contains no information protection.
There is not even a parity bit for the UART communication,
which would be essential for the WDP concept. This is a
significant problem and can be solved by ARM only, but
solving this problem is a very simple modification in the TPIU
hardware description. Another typical problem that many
microcontrollers do not have buffer for the SWV line, however
the CoreSight architecture makes this possible. The lack of
such buffering significantly reduces the traceable information
through the SWV. Other problem with SWV is that currently
not every safe core microcontroller has this interface routed to
the pins of the chip.

Summary the concept of the trace and debug port based
watchdog processor is promising, but many additional work
and analysis needed, but these are the subject for future
articles.

REFERENCES

[1] Ron Wilson’s and David Blaza’s Webinar, “Embedded Market Study

2011” EETimes, ESD, UBM Electronics. 2011.

[2] Karl Greb and Anthony Seely, “Design of Microcontrollers for Safety
Critical Operation” ARM Techcon3 conference presenttion, Texas
Instruments 2010.

[3] Freescale white paper, “Addressing the Challenges of Functional Safety
in the Automotive and Industrial Markets,” 2011 Freescale Document
Number: FCTNLSFTYWP.

[4] ARM Technical Reference Manual ”CoreSight™ Components “,ARM
DDI 0314H. 2004-2009.

[5] ARM Technical Reference Manual ” CoreSight™ v1.0 Architecture
Specification “,ARM IHI 0029B. 2004-2005.

[6] H. Thane. “Monitoring, testing and debugging of distributed real-time
systems” In Doctoral Thesis, Royal Institute of Technology, KTH, S100
44 Stockholm, Sweden, May 2000. Mechatronic Laboratory,
Department ofMachine Design.

[7] AUTOSAR GbR. ” Specification of Operating System V3.0.2 R3.0 Rev
0003”, Document ID 034: AUTOSAR_SWS_OS. 2008

