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Abstract Video on demand systems are going to be

important services of the future Internet. To achieve

scalability and fault tolerance, these systems should
rely on distributed video delivery schemes, using peer-

to-peer (P2P) networks built among the clients. How-

ever, generic P2P data sharing protocols cannot guar-
antee timely arrival of the video segments. Therefore,

they must be adapted to video streaming by restrict-

ing P2P delivery into a download window. In this pa-
per we investigate the effect of the frequently occurring

phenomenon of incomplete sessions on the efficiency

of stored video streaming via P2P data distribution.

Through theoretical considerations and a simulation
study, we’ve found that with a P2P download window

the number of superfluous downloads can be limited,

while retaining the efficiency of the P2P distribution.

Keywords incomplete sessions, P2P, video on demand

1 Introduction

The currently popular online video on demand (VoD)
services, like Netflix and Hulu, or the aggregators of

user-generated content, like YouTube, are just the first

step towards the truly interactive multimedia experi-
ence of the future. However, a wide range of content,

easy navigation, and competitive pricing are not enough

to replace conventional television, as network operators

see these services as a huge threat against their de-
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ployed network capacity, and try to discourage their

customers via pricing.

VoD systems have to use a scalable and resilient ar-

chitecture in order to overcome the network limitations
and reach the masses. A single content server is both

fragile and expensive: it represents a single point of fail-

ure, it needs very high capacity, and it generates huge

amounts of network traffic, as it cannot be close enough
to all possible clients. To overcome these limitations the

content library is usually (partially) replicated at sev-

eral sites, thus dividing the load, and increasing fault
tolerance. These replica servers can also optimize the

overall network load, because they are installed in the

vicinity of the clients [7].

Distributing videos is also possible via decentralized

peer-to-peer (P2P) systems [1]. These schemes let the
clients share the data they have already downloaded;

thus, the required network capacity at the content ser-

ver does not increase linearly with the number of clients.
P2P systems can even function without any central con-

tent server, and they do not require such a strict man-

agement as in case of caching. Peers don’t have to be

always connected, but join the network on a voluntary
basis; thus, the fault tolerance of P2P solutions is usu-

ally higher.

P2P systems come in wide variety, from distributed

content indexing to distributed data storage. They can

be structured (tree or mesh based), or unstructured,
the latter being more fault tolerant, but less efficient.

Some of the most popular P2P file sharing systems in-

clude Gnutella2 [12] and BitTorrent [3]. P2P-assisted
commercial VoD systems have also been deployed, e.g.

Joost and PPLive.

It is known that users often do not watch the entire

videos, and several video caching system designs con-

sider the effect of incomplete sessions. However, to our
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knowledge we are the first to examine the effect of this

phenomenon on stored video streaming via P2P. In this
paper we analyse the effects of windowing BitTorrent

to adapt it to video streaming. We show that window-

ing can guarantee timely arrival with high probability,
and the reduced number of active sessions increases the

efficiency of P2P distribution.

The rest of the paper is organized as follows. In
section 2 we summarise the related work on P2P VoD

and the incomplete sessions. In sections 3, 4, 5, and 6

we analyse how windowing affects the efficiency of Bit-
Torrent. We present results of our simulation study in

sections 7, and 8. Finally, we draw the conclusions in

section 9.

2 Related Work

2.1 P2P Video on Demand

Several different P2P architectures have been proposed
for video delivery, most of them trying to offload cen-

tral servers. Tree-based solutions [6,5] build forking for-

warding chains, with the server in the root. However,
the presence of a central server in most designs is im-

portant, as the peers are considered unreliable. They

enter and leave the P2P swarm at will, but the service
quality must be kept above a threshold.

The most popular mesh-based P2P protocol applied

for video streaming is BitTorrent [3], because it is very
popular as a file sharing system, and it is relatively sim-

ple, but efficient and flexible. It divides the data into

small pieces, called chunks, and those chunks are ex-

changed by the participating peers. Those having all
the pieces are called seeders, while the others are called

leechers. The incentive to upload is ensured through the

peer selection mechanism, which is based on a tit-for-
tat scheme; a node prefers uploading to peers that have

been willing and efficient to upload themselves in the

past, this scheme being called unchoking. To achieve
high throughput, BitTorrent employs the rarest-first

chunk selection scheme, which eliminates the bottle-

necks by equilibrating the availability of the chunks.

However, BitTorrent is not suitable for streaming

video without modifications, exactly because of this

rarest-first scheme. If the chunks are video segments,
they have to arrive more-or-less in playback order, or

either the users have to suffer from very high startup

delay (they must wait until most of the video is down-

loaded), or several segments have to be downloaded
from the central server to fill the gaps. Several im-

provements have been proposed to address this limi-

tation, usually by adding a sliding window ahead of the

playback position, and preferring to download chunks

within that window (BASS [4], BiToS [13], Toast [2]).
Numerous papers analysed the efficiency of P2P vi-

deo distribution systems analytically as well. There are

two research tracks that are important for us. In [9]
the mean of the achievable throughput and the start-

ing latency for in-order and rarest-first segment selec-

tion schemes are analyzed with a fluid model, based on
the one presented in [10] for the unmodified BitTorrent

protocol. There are analyses on live video streaming

systems as well, where determining the optimal buffer

size [14] and the priorities for downloading each seg-
ment in the buffer [17] are the important questions. Live

streaming is fundamentally different from stored video

streaming (e.g., the playback position is the same for
all clients, none of them has any segments outside the

playback buffer, and the missed segments are simply

skipped), but their methodology is applicable.

2.2 Incomplete Sessions

The authors of [11] conducted measurements on two

corporate video servers, and published a statistical ana-
lysis of client behaviour, regarding video popularity dis-

tribution, the evolution of these popularities, the tem-

poral characteristics of the requests (e.g., inter-arrival
time, diurnal request intensity change), and the session

lengths. They’ve found that the clients terminate most

of the video sessions very early, and watch the entire

video only in very few cases. They call the distribu-
tion of the session lengths prefix distribution, and give

a characterization using three distributions. There is a

given ratio of completed sessions, the distribution of
the sessions shorter than 5 minutes is exponential, and

in the range in between those the prefix has a uniform

distribution. According to their studies, the prefix dis-
tribution highly depends on the length of the video.

Based on their measurement results and statistical

models, they have created a video server workload gen-

erator tool, called MediSyn, which generates synthetic
video request patterns that obey all statistical proper-

ties they measured. We used this tool to generate the

prefix of the video requests for our simulations.
The browsing nature of client accesses was also ob-

served in [15]. They used measurements taken on public

media servers, and reached similar conclusions to [11]:
most of the sessions terminate very early, and only a few

of them are completed. They also examined the connec-

tion between the popularity of the videos and the prefix

distribution, and they found that the mean prefix size
does not depend on the video popularity, but its distri-

bution does: less popular videos generally have a larger

percentage of completed sessions.
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Fig. 1 Prefix distribution used in our simulations: (1a) cu-
mulative distribution function; (1b) popularity distribution
of the segments, and a k-transformed Zipf distribution fitted
on it

An explanation for the prefix phenomenon is that

the clients are browsing through the content. They can-
not decide if they want to watch a video based only

on its title or description, so they start watching, but

change their minds after the first few minutes. The late
terminations might be attributed to boredom, lack of

time or lack of patience ([11] examined servers with

corporate training videos). In public VoD systems the

reasons for incomplete sessions are similar, but pay-per-
view schemes might increase this effect further. In such

services the clients are allowed to watch the first ∼ 10

minutes of the videos for free, where they have to decide
whether they want to pay for the rest or not.

A further analysis on incomplete sessions was pub-

lished in [16]. In that paper the k-transformed Zipf dis-

tribution was proposed to model the popularity distri-
bution of video segments, which they call internal popu-

larity. The k-transformation was initially developed by

the authors of MediSyn in [11] to ease the fitting of
the Zipf-Mandelbrot law [8] on the popularity curve of

the videos. An online method is also presented in [16]

to determine the parameters of the internal popularity
distribution, which is then used to perform per-segment

caching decisions.

The video request list that we generated for our sim-

ulations consists of requests for a single video with con-
stant arrival rate and has the same prefix distribution

as the default settings of MediSyn. We could not use

MediSyn directly, as it only has a fixed set of built-in
video popularity evolution functions, and cannot gen-

erate constant arrival rate.

As the fitted curve in Fig. 1b shows, the segment

popularity distribution generated with MediSyn is not

Fig. 2 The download windows used by the clients

exactly a k-transformed Zipf distribution. This does

not invalidate the analysis done in [16]; however, in

that paper the authors admit that not every video fol-
lows strictly that distribution, and the distribution of

MediSyn might be wrong as well. We decided to use the

model of MediSyn, because it is well-defined, and the
two are very close.

3 Windowing BitTorrent

We examine a P2P-assisted VoD system that serves

stored media files, where the P2P distribution network
offloads a central video server. The P2P download of the

clients is limited by a sliding window placed ahead of

the playback position, as it was proposed in several pa-
pers already [13,2]. In those schemes the window was

used to increase the timeliness of segment arrival; in

addition, we also use it to avoid downloading segments

that are not going to be played, because of the video
being stopped by the user. For this reason, we also ex-

amined, if it is advantageous to place the P2P window

at a fixed distance from the playback position, prevent-
ing it from advancing too fast, and downloading too

much. In this section we formally analyze the efficiency

of this kind of windowing.

Our analysis focuses on one video, for which the

requests arrive according to a Poisson process with λ

intensity. The video is composed of N equally sized
segments, which are the atomic transfer units, i.e., a

client can download a segment from just one other node

at a time, and segment downloads cannot be inter-
rupted. This is a simplification over the real BitTorrent

protocol, where the chunks are the unit of bookkeep-

ing, and it is possible to download almost any byte

range of the content (the addressing is <chunk, off-
set, length>). Also, BitTorrent allows downloading the

same part from multiple sources at the same time, which

is used heavily in the endgame.

The segments are numbered from 1 toN in the play-

back order. The playback position is at segment s⊲, as

shown in Fig. 2. The P2P download window is in the
[sp, sn) range, the window size is W = sn − sp. Seg-

ments preceding ss are downloaded from the server, if

their transfer hasn’t been started, because we have to
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provide continuous video experience. This is called the

fallback window. Naturally, ss ≥ s⊲ and sp ≥ s⊲ are
required.

In the P2P window each segment can be either Full,
if it is downloaded or is under download, or Empty.

The number of Full and Empty segments are F and

E respectively, and of course W = F + E. The play-
back of one segment is called a round or timeframe; in

each round the playback position and the P2P window

advance. The playback window advances 1 segment in

each round, and the P2P window advances a(t) seg-
ments, where time t is the playback position.

The window can also be viewed as a shift register:
the first segment is removed (the exit segment), the rest

is shifted with one position, and an Empty segment is

shifted in at the W th position. If the exit segment is
Empty, it is called a miss. Such missing segments must

be downloaded from the server once they enter the fall-

back window to provide continuous video experience.

The time unit is the playback time of one segment.

The clients have uniform uplink capacity, they can up-

load at most U segments at a time, and it takes at
least T timeframes to transfer one segment. The total

download speed may also be limited to at most D par-

allel downloads, but in the theoretical study we had to
assume D = inf for simplicity. In a real system the con-

straint is D > T , because the download capacity must

be higher than the video bitrate.

According to [10], the generic model for the evolu-

tion of the number of leecher (x) and seeder (y) peers

in a BitTorrent-based P2P system is

dx/dt=λ− θx− γx (1)

dy/dt=γx− µy,

where λ is the rate of arrival of new clients, θ is the

rate of early departures (these leave the system), γ is

the completion rate (these keep on uploading), and 1/µ

is the average seeding time. If we solve (1) for dx/dt =
dy/dt = 0, we obtain

x =
λ

θ + γ
y =

λ

µ
. (2)

Analyses in [9,10] focus on determining γ, because that

is the key parameter that governs the efficiency, while
the others are external parameters describing the be-

haviour of the users.

In the usual BitTorrent terminology the seeders have

the entire video, but in our case the clients abort down-

loading the video as the playback is stopped, while con-

tinuing the uploading. Therefore, in our terminology
the clients that are both downloading and uploading

are “leechers”, and the ones that are only uploading are

“seeders”, irrespectively of the amount they have.

Observe that y is independent of the prefix, as it

only depends on the arrival and departure intensity,
while being insensitive to the length of the video and

the transfer speeds. The consequence of this is that the

swarm might be better seeded, since there are fewer
leechers due to the shorter sessions, but the number of

seeders is the same; they are not able though to provide

segments to all leechers.

4 Download Initiation Probability

In this section we show how the probability of finding

a P2P uploader for a segment depends on the system
parameters. This train of thought is an adaptation of

the model shown in [9] to the prefixed case.

The incomplete sessions are described with a φ(i)

function, which is defined as the number of accesses
for the ith segment (as seen, e.g., in Fig. 1b) divided

by the total number of sessions. It is not a probability

measure, as it is not normalized to 1. If we assume that

all clients start playing the video at the first segment,
and no jumps are allowed, then φ(0) = 1 and φ(i) is a

monotonically decreasing function, but we don’t limit

this analysis to such constraints.

In reality the segments have finite length; thus, φ[t]
should be a discrete-time function, but due to techni-

cal considerations we have to treat it as a continuous

function in this section.

As mentioned earlier, each client can upload to U
other clients simultaneously, and there are approx. x+y

clients in total who can upload. The leechers have ongo-

ing download connections, which already occupy upload
slots, and of course they want to start new downloads in

each round; thus, they have a time dependent download

demand d(t). There are λdt clients in an infinitesimal
time interval around time t in the playback without

prefix, and λφ(t)dt with prefix.

The number of leechers older than t′ is

λψ(t′) = λ

∫ N

t′
φ(t)dt, (3)

their demand is

λΞ(t′) = λ

∫ N

t′
d(t)φ(t)dt. (4)

The number of leechers is λψ(0), the total demand

is λΞ(0). Since φ(t) is a known function, ψ(t) is also
known, but Ξ(t) contains the yet unknown evolution of

the demand d(t).

According to [9] the probability that a client can

start a new download can be calculated as

p(t) = min

{

relevant supply

concurrent demand
, 1

}

, (5)
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where the relevant supply are given by the peers having

segments the client wants, and the concurrent demand
is generated by the peers who also want to download

from those peers. Note that without the clamping high

supply or low demand could cause p > 1.
Due to the windowing the clients download the seg-

ments of the video more-or-less in order; thus, a client

at time t′ = s⊲ is only interested in the upload of the
leechers that are older than itself. The number of such

clients is λψ(t′). Due to the prefix, not all seeders have

segments beyond t′. The number of seeders that do have

such segments is yφ(t′). Using these we get

supply relevant for client in t′ = U(yφ(t′) + λψ(t′)).(6)

According to [9] the concurrent demand can be cal-
culated indirectly from the demand served by clients

younger than t′. The number of clients in a small dt time

interval at t < t′ is λφ(t)dt, their demand is d(t)λφ(t)dt
(note that in [9] they have λDdt, because in their sim-

plified model the clients can initiate D new connections

in every round, and transfers take one timeframe). This
demand is distributed uniformly to the yφ(t) + λψ(t)

potential uploaders a-priori. One potential uploader re-

ceives

d(t)λφ(t)dt

yφ(t) + λψ(t)
(7)

demand from these clients, and there are λ(ψ(t)−ψ(t′))

of them in [t, t′]. The total demand that can be ignored

is thus

δ(t′) =

∫ t′

0

λ2d(t)φ(t)(ψ(t)− ψ(t′))

yφ(t) + λψ(t)
dt. (8)

From (6) and (8) the download initiation probability

is

p(t′) =
U(yφ(t′) + λψ(t′))

λΞ(0)− δ(t′)
(9)

The nominator only depends on the playback position,

and the known constants U , y, λ, and φ(t). The denom-

inator, however, depends on Ξ, which is the integral of

d(t), for which we will develop difference equations in
the next section. An interesting property of (9) is that

in the equilibrium, where y = λ/µ according to (2), we

can completely eliminate λ from the formula.
To analyse the dependency of p(t′) on φ(t), we com-

puted (9) numerically for the segment popularity of

MediSyn and the unprefixed case with U = 1 and d(t) =
D = 1. The (unclamped) results are shown in Fig. 3 for

some µ values. At short seed durations the two are very

close, but as 1/µ gets more realistic they begin to dif-

fer. In Fig. 3b this doesn’t seem important, as p > 1
in both cases, but D > 1 moves them into the p < 1

range. At even longer seed durations the shape of p(t′)

becomes identical to φ(t).
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Fig. 3 Numeric evaluation of (9) for (3a) 1/µ = 1s; (3b)
1/µ = 5400s= N mean seed duration

If φ(t) = 1 and d(t) = D constant, (9) can be solved

analytically. The formula is too complicated to be use-
ful, but it is quite simple at the beginning

φ = 1 → p(t′ = 0) =
U

D

1 + µN

µN
(10)

and the end

φ = 1 → p(t′ = N) =
U

D

1

ln(1 + µN)
(11)

of the video. The linear approximation of p(t′) using
these endpoints is also shown in Fig. 3. In this case p(t)

is constant for realistically long seed durations (several

times longer than the length of the video); thus, the
linear approximation gives the exact solution. Although

(10) and (11) are different, if µ is small we can use the

formula ln(1 + x) ∼ x, and they both become

p ∼ U/(DµN). (12)

(9) cannot be further simplified analytically to find

its dependency on d(t), even in the simpler φ(t) = 1
case. In the next section we will use constant φ(t) in

the numeric analysis to avoid introducing errors.

5 Windowing Algorithms

In this section we analyse how the windowing affects the
system performance. Unlike the previous section here

we use discrete time to describe the system.

We are mainly interested in the miss probability,

and the number of Empty segments E[t], the demand
d[t], the position of the P2P window π[t].

The demand of a client is the total number of up-

load slots it intends to allocate for itself in a round. It
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already allocated slots for the ongoing downloads, and

in each round it wants to start downloading all remain-
ing Empty segments in the P2P window; thus the total

demand is

d[t] = E[t] + ongoing[t]. (13)

The formula for the change of the demand is

∆d[t]=newly started − ended since last round +

+∆E[t]. (14)

As substituting this difference equation into (9) is not

solvable, we will analyse it numerically by assuming

constant p.

We examine two P2P window placement schemes. In

the Progressive scheme the P2P window steps over ev-
ery Full segment in the beginning of the window; thus,

a[t] > 1, and a[t] = 0 are possible, but sp ≥ s⊲ is re-

quired. The Streaminglike scheme places the P2P win-
dow at a constant distance from the playback position;

thus, a[t] = 1 in every round. This one is expected to

download fewer unneeded segments than the Progres-
sive scheme.

We examine two segment selection schemes within
the P2P window. The Random scheme randomly picks

segments for download in the P2P window. According

to [9] the random segment selection scheme is a good
approximation of the rarest-first scheme. The Linear

scheme tries to download segments in-order, starting

from the first Empty one, and the process stops when
no uploader was found for a segment, or the end of the

P2P window is reached. Together with the two window

placement schemes they allow 4 combinations, which

we analyse in the following sections.

The position of the P2P window π[t] is updated in
every round. In the Streaminglike case a = 1, and the

window maintains a constant distance from the play-

back position. In the Progressive case this only hap-

pens, if sp = s⊲, and a[t] ≤ 1, otherwise the window
position is

π[t] =

t
∑

i=1

a[i]. (15)

5.1 Progressive Mode, Random Segment Selection

In this scheme the P2P window advances a[t] segments

in the tth round, where a[t] equals the number of Full

segments at the beginning of the window. Of course, the

P2P window can’t stop for long, even if a ∼ 0, because
it must be kept ahead of the playback position, poten-

tially resulting in missed segments. We will denote the

number of rounds the kth segment of the window has

spent in the P2P window with g[k, t] (k = {1 . . .W}),

which depends on the advance of the recent rounds.

In each round a[t] Empty segments are shifted in at

the end of the P2P window, and pE Empty segments

are converted into Full on average. The download speed
is thus pE, which is faster than the playback speed, if

p > 1/E. It is compared to the linear case in Fig. 6.

The exact probability of a segment miss is rather
complicated, we will approximate it with (1 − p[t])g[1].

Using these we can construct the evolution of the num-

ber of Empty segments as

∆E[t] = a[t]− p[t]E[t]− (1− p[t])g[1,t], (16)

and the evolution of the demand of a client as

∆d[t]=starts[t]− stops[t] +∆E[t] (17)

=p[t]E[t]− p[t− T ]E[t− T ] +

+(a[t]− p[t]E[t]− (1− p[t])g[1,t])

=a[t]− p[t− T ]E[t− T ]− (1− p[t])g[1,t].

Generic formulas for g[k, t] and a[t] are hard to find,
especially if we consider that p[t] depends on the play-

back position. Instead, we will develop their values for

the steady-state, where E is constant or changes very

slowly. In this case pE is also constant, the P2P win-
dow advances a(p) segments in each round, resulting in

constant g.

If a(p) is constant, segments spend approximately
⌈W/a(p)⌉ rounds in the P2P window; therefore, the seg-

ment in the kth position is in the window since

g[k] =

⌈

W − k + 1

a(p)

⌉

(18)

rounds, in other words it had g(k) opportunities to be-

come Full. We get the number of Empty segments

E =
a(p)− (1− p)g[1]

p
, (19)

by solving (16) for ∆E = 0.

The number of Full segments at the beginning of
the window is f(p). The probabilities for the possible

values are

P(f(p) = 0)=(1− p)g[1]

P(f(p) =W )=
W
∏

j=1

(1− (1− p)g[j]) (20)

P(f(p) = i− 1)=(1− p)g[i]
i−1
∏

j=1

(1− (1− p)g[j]),

where segments [1, i − 1] are Full and segment i is the

first Empty. This is a probability measure, as its sum

is 1.
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The expected advance is thus

a(p)=E{f(p)} =

=

W
∑

i=2

(i− 1)(1− p)g[i]
i−1
∏

j=1

(1− (1− p)g[j]) +

+W

W
∏

j=1

(1− (1− p)g[j]), (21)

if there is no need to correct it to a = 1 to keep the P2P

window ahead of the playback position. Solving this

is quite complicated, as a(p) is embedded in g[j]. We
calculated a(p) from (21) numerically for some window

sizes. The result of this is shown in Fig. 4; the jumps

in the curves are caused by the rounding in g[j]. A
comparison of this advance speed to the Progressive

Linear case is shown in Fig. 5 for W = 50.

5.2 Streaminglike Mode, Random Segment Selection

The difference between this and the Progressive mode is

that a[t] = 1 constant. The effect of this change is that

the P2P window can be full of Full segments, because it

cannot advance faster than the playback. The evolution
of the number of Empty segments in this case is

∆E = 1− pE − (1− p)W , (22)

as g[k] =W − k+1 independently of p or the playback

position. The number of Empty segments in the P2P

window in steady-state is shown in Fig. 7 for constant
p compared to the Linear case. Though the download

is faster than the playback even at small p according

to Fig. 6, the decreasing number of Empty segments
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Fig. 7 Number of Empty segments in the P2P window in
the Streaminglike case in steady-state

limits the download speed, and the window cannot be
fully converted below a certain p.

5.3 Streaminglike Mode, Linear Segment Selection

We start the Linear segment selection with the Strea-

minglike case, because this is the more general one. At

the beginning of a round there might be some full seg-
ments at the beginning of the window, and the remain-

ing E = W − F are Empty. The probability that i− 1

segments are converted in the round is

Pi = P(ith is the first Empty) = pi−1(1− p). (23)

Converting all of them is a special case, it has pE proba-
bility. This is a probability measure, as its sum is 1. The

expected number of newly started downloads (Leap) is

L=E{pi} − 1 =

E
∑

i=1

ipi−1(1− p) + (E + 1)pE − 1

=
1− pE

1− p
− EpE−1 + (E + 1)pE − 1 ∼ p

1− pE

1− p
, (24)

where the derivative of the formula for the sum of Geo-

metric series was used. The last step contains a simpli-
fication that introduces negligible error, while greatly

simplifying the formula. If L < 1, then the miss prob-

ability is (1 − p), but miss-free operation is possible,
if L ≥ 1. (24) yields a degree E + 1 polynomial, if we

want to compute the required p for faster download

than playback (L = 1); thus, it has no universal so-

lution formula. Numerical results are shown in Fig. 6
compared to the random case.

The number of Empty segments is decreased with

L in each round, one new Empty segment is shifted in
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Fig. 8 The evolution of the number of Empty segments in
the P2P window and the number of ongoing downloads in the
Streaminglike case at p = 0.7

as the window moves, and the exit segment might be

Empty as well; thus, the evolution of E is

∆E[t] = 1− L[t]− exit[t]. (25)

The state of the exit segment is hard to handle analyt-

ically. If E < W , then it is surely Full, but if E = W ,

then two cases are possible: if L ≥ 1, then it was con-
verted to F , otherwise it is Empty with probability 1−p.

Additionally, there is a 0 ≤ E ≤W constraint. We eval-

uated the evolution of the number of Empty segments
numerically for constant p. Fig. 7 shows the number of

Empty segments in the P2P window in the steady-state.

Unlike the Random scheme, there is a phase change at

p = 0.5.

The evolution of the demand of a client is

∆d[t]=starts[t]− stops[t] +∆E[t]

=L[t]− L[t− T ] +∆E[t]

=1− exit[t]− L[t− T ]. (26)

The constraints for this are d ≥ 0 and the ongoing

downloads should be d − E < D. As the numerical

results for E[t] showed, the steady state is either E =W

or E = 1 depending on p; the demands in these cases are
W ≤ d ≤ W + T and d = T respectively, as at most T

ongoing downloads are possible in both cases. At high p

the Linear and the Random scheme is indistinguishable:
in both cases the P2P window is full, and it doesn’t

matter how the one new Empty segment is selected.

The download process is shown in Fig. 8 for the “high
p” phase: E decreases monotonously, while the number

of downloads initially increases, then decreases to ∼ T ;

d is the sum of these two.

5.4 Progressive mode, Linear segment selection

This case is the same as the Streaminglike case, but here

E =W in each round, as a[t] = L[t], which is compared
to the Random case in Fig. 5. The implication on d[t]

is that only W ≤ d ≤ W + T is possible, because the

“high p” phase never occurs.

6 Further Effects

In this section we describe two effects that arise in real
systems, but can’t be covered by the models presented

in the previous sections.

6.1 Prebuffering

Before the playback can begin, the first few segments
have to be downloaded, this is called prebuffering. The

size of the buffer should be B ≥ T , because once the

buffer is filled, the playback starts, and the first seg-
ment after the buffer has to be downloaded before the

playback arrives. As the download speed is D ≥ T , the

question is whether B should be smaller or bigger than

D. To minimize the number of extra downloaded seg-
ments in case the session is aborted early, B = T is

a good choice, but it may happen that the downlink

and the storage at the clients are cheap, in which case
the extra downloads increase the number of potential

uploaders.

If D > B, and in the prebuffering phase the client

utilizes its entire downlink capacity, the P2P download
window is not empty when the playback starts (unless

D = kB, where k ∈ {2, 3, 4 . . .}). Depending on p this

means that in the Streaminglike case either the P2P

window gets filled faster, or there is a little time before
the window settles at E = W . In the Progressive case

the P2P window starts farther from the beginning of

the video than its initial placement, which might lead
to more extra download if the session is aborted.

6.2 Overloading

The advance of the P2P window is a(p[t]). If the play-

back is interrupted, the download of the Full segments
ahead of it occupied the network unnecessarily. The

number of such segments is approx.

s[t] = (1− pmiss(t))(sp − s⊲) + (W − E[t]), (27)

if the playback stopped at time t. The expected value

of s[t] is

S =

N−1
∑

t=1

S[t](φ[t]− φ[t+ 1]). (28)

The segment popularity function φ[t] given in [11,

15] are based on playback control events, but due to pre-

buffering and overloading the popularity curve of played
and downloaded segments differ significantly. Instead of

building an analytic model for this phenomenon we de-

cided to conduct a simulation study instead.
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7 Simulation Setup

Our analysis in the previous sections used a simplified

model of the VoD clients, and focused only on the P2P

downloads. As we have seen, the windowing and the
prebuffering make the system nonlinear, and hard to

analyze analytically; thus, we used stream-level simula-

tions to further investigate the system in realistic sce-
narios. To do this, first we need to define the operation

of the client in detail.

7.1 System Details

As already mentioned, the P2P download window can

miss some segments, either because of the download ini-

tiation probability p being low or in the Progressive case
the window moving too fast. These segments have to be

downloaded from a different content source to provide

continuous video experience to the user. This content

source might be a central server storing all videos or a
distributed network of video caches.

A general model of the fallback mechanism has two

stages, as shown in Fig. 2. Empty segments in the server
window (range (s⊲, ss]) can be downloaded from the

server if there is sufficient downlink capacity. The seg-

ments in the fallback window (range (s⊲, sf ]) are too
close to the playback position; if an Empty segment en-

ters this range, its download must be initiated with-

out delay. The size of the fallback window must be

sf − s⊲ ≥ T + 1 segments to guarantee timely arrival,
and not much larger to minimize overload, but ss − s⊲
is arbitrary. The server window might even be absent,

we didn’t implement it for our simulations.
We implemented the downlink limitation of the cli-

ents as a hard limit on maximum number of concurrent

downloads D. The two most important consequence of
the limited downlink are that the download demand is

0, if the limit is reached, and fallback is temporarily not

possible, which may lead to buffer underrun.

There are two possible schemes to ensure fallback
with limited download capacity. One is to avoid such

situations by implementing a complex resource man-

agement algorithm that detects the missed segments
and reserves downlink slots in advance for the fallback.

The other is to abort P2P downloads to free downlink

capacity for the fallback. We chose the latter scheme,
because of its simplicity, but it is important to note

that it breaks the assumption that segment transfers

are atomic.

In our model the server can upload any segment in
T timeframes. The P2P clients are usually very unreli-

able, which we model with a probabilistic upload time:

uniform distribution in range [T, ζT ], where ζ ≥ 1; all

presented results have ζ = 2. Due to the unreliability

of the P2P uploads we decided to prebuffer exclusively
from the server to minimize the startup delay.

7.2 Simulation Parameters

We used a synthetic list of requests for the video arriv-

ing with λ = 1/172.8 requests per second (this is a very

popular video). These requests were distributed among

a large client pool with U = 1, T = 8. The mean of the
seed duration was set to 1/µ = 5days = 432000 sec-

onds, because Set-top-boxes usually have large storage,

and they can seed the video until it is overwritten by
newly watched content. The number of seeders is thus

y = λ/µ = 2500. In the simulations all clients seed the

video; thus, θ = 0 in (2).

The video itself is assumed to be 90 minutes long
with 10 second segments; thus, N = 540. In a real sys-

tem the segments (the atomic transfer units) would be

< 1 second long. The number of leecher peers, x, de-
pends on λ and the length of the video: with incomplete

sessions x ∼ 15, with complete sessions x ∼ 32.

8 Simulation Results

In Fig. 9 the number of times the segments were played

is compared to the number of times they were down-

loaded from the two sources. In both cases the down-

link limitation D is tuned to show the turning point,
where the P2P and the server downloads are almost

equal (D = 14 for Linear, D = 11 for Random). The

P2P download peak is clearly visible in Fig. 9b, but it is
not that apparent that the lines are much more smooth

in Fig. 9a than Fig. 9b. In the Linear case D± 1 zeroes

out either the server or the P2P downloads except for
the beginning; the shift is gradual in case of Random

segment selection.

The Streaminglike scheme, shown in Fig. 10 is al-

most identical to the Progressive. At the same settings
there are slightly fewer P2P downloads, and, unlike the

Progressive case, the steepness of the curve of the total

download amount cannot differ from the watched pop-

ularity. Both Fig. 9 and Fig. 10 show that the great-
est difference between the played and the downloaded

amount is in the beginning of the video, but not all of

that can be attributed to the prebuffering.

9 Conclusions

In this paper we analysed the effect of incomplete ses-

sions on on-demand stored video streaming assisted by
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Fig. 9 Number of segments watched and downloaded in the
Progressive scheme; (9a) Linear; (9b) Random

peer-to-peer distribution. We found that the use of a

modified version of the BitTorrent protocol with a down-
load window added to increase the timeliness of the ar-

rival of video segments provides good performance.

In the theoretical study we developed models for

several possible operation methods of the system, and
found that in a poorly seeded P2P swarm the there is a

big difference in performance for the different methods,

which disappears if there are enough seeders and the
downlink speed is adequate.

Our simulation study confirmed these findings, and

provided further insight. The efficiency of the P2P dis-

tribution heavily depends on the downlink capacity, and
a download window at a fixed distance from the play-

back position is as efficient as a freely moving window.
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