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1 Introduction

Phase-sensitive amplifiers (PSAs) have recently drawn significant attention due to their potential for
phase regeneration through phase squeezing and noiseless amplification [1]. The most common tech-
nique of implementing a PSA is to use four-wave mixing (FWM) in a highly non-linear fiber (HNLF)
based fiber-optic parametric amplifier (FOPA) to generate phase correlated signal, idler and pump waves
that are combined at an input to a second FOPA operated as a PSA [1, 2, 3, 4]. However, the use of
cascaded second-order non-linearity in periodically-poled lithium-niobate (PPLN) waveguides also of-
fers the prospect of compact, low latency, broadband devices due to high non-linear coefficients, low
spontaneous noise emission, low crosstalk and no intrinsic frequency chirp [2]. Additionally, PPLNs are
immune to stimulated Brillouin scattering (SBS), which limits the pump power in FOPA-based devices
and requires significant additional complexity, such as phase modulation, or specially strained fibers to
overcome. Furthermore, the length of HNLF required increases the requirement of active phase correla-
tion schemes compared to non-linear chips, particularly in interferometric set-ups.

2 Four-wave mixing for phase-sensitive amplification

Most phase-sensitive amplifiers exploit Four-Wave Mixing (FWM) for the phase-sensitive operation.
The coupled nonlinear equations for the phenomenon are [5]:
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2 FOUR-WAVE MIXING FOR PHASE-SENSITIVE AMPLIFICATION

∆k = (n3ω3 + n4ω4 − n1ω1 − n2ω2)/c (2.5)

where the first term is Self-Phase Modulation (SPM) the second is Cross-Phase Modulation (XPM) and
the third one is FWM. As can be seen FWM can only occur permanently if the phase mismatch is zero.
If the mismatch is not zero, the FWM-caused power transfer will periodically change sign, thus move
around zero. It can be seen that XPM and SPM can be handled as the special cases of FWM, which
inherently guarantees the phase matching condition. Thus, these effects appear at any dispersion in the
fiber.

Let us now introduce the effective core area instead of the overlap integral and the nonlinear constant
and assume they are the same for all waves:
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1

f 1234
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1
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1
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=
1
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(2.6)

γ=
n′2ω

cAeff
(2.7)

In normal fiber phase matching is reached through operating in the near-zero dispersion domain. To be
precise, ∆k should be exactly zero at high powers due to SPM and XPM effects shifting the signal and
pump phase. This can be taken into account by solving the above equation for one strong wave (e.g.
pump) neglecting fiber losses. We only need to take into accout SPM and get

dA

dz
= iγ|A|2A. (2.8)

From the undepleted pump approximation |A|2 = P , where P is the pump power. Then we get

A(z) =
√
PeiγPz. (2.9)

From which the pump phase shift is obvious.

As the effect of SPM and XPM can be compensated by tuning ∆k, from now on let’s only take into
accout FWM. If we choose equation 2.1 and assume ∆k = 0 for FWM we get:

dA1

dz
= iA∗2A3A4 · const. (2.10)

If A2, A3 and A4 are undepleted, they generate a fourth signal (A1), with pi/2 phase shift. If there is
already a signal present at this wavelength, the superposition of the original and the generated signal will
be present. This phase shift will play an important role in determining the power flow direction. Next let
us assume a degenerate setup with A1 and A2 coincident (figure 2.1)
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assuming perfect phase matching (∆k = 0) we get
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= iγ · 2A∗1A3A4 (2.14)
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2 FOUR-WAVE MIXING FOR PHASE-SENSITIVE AMPLIFICATION

Figure 2.1: Phase changes and power flow through four-wave mixing controlling a non-degenerate wave
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If there are only two waves present in the system on the input, a new wave will be generated. If we use
φ3 and φ4 for the phases of A1(0) and A3(0), we get for A4(dz)

φ4(dz) = 2φ1(0)− φ3(0) + π/2. (2.17)

This results in stable phases for the signal and the idler with dAs and dAi always pointing in the same
direction as their current value while gives decreasing pump power as dAp will always point to the
opposite complex direction as its current value. Let us now see how the other waves change using the
notation dφm for the phase of dAm

dφ1 = π/2− φ1 + φ3 + φ4 = π/2− φ1 + φ3 + 2φ1 − φ3 + π/2 = π + φ1 = −φ1 (2.18)

dφ3 = π/2 + 2φ1 − φ4 = π/2 + 2φ1 − 2φ1 + φ3 − π/2 = φ3 (2.19)

dφ4 = φ4 (2.20)

Which shows that the power from the degenerate wave will keep flowing from the other two waves. Now
if the third wave is present with arbitrary phase:

φ4 = 2φ1 − φ3 + π/2 + ∆φ (2.21)

dφ1 = −φ1 + ∆φ (2.22)

dφ3 = φ3 −∆φ (2.23)

dφ4 = π/2 + 2φ1 − φ3 = φ4 −∆φ (2.24)

In the general case this is difficult to evaluate. But let us now take the special cases of ∆φ = 0 and
∆φ = π. In the first case, obviously, A3 and A4 will keep being amplified and their phase will not be
distorted. On the other hand, the changes on A1 will have the opposite sign as the current amplitude,
thus its phase will not be distorted, but its amplitude will decrease. Effectively, the process will transfer
power from the A1 to the A3 and A4. For ∆φ = π the process will reverse, transferring power from A3

and A4 to A1. Next, let us check what happens when we apply the phase shift to A1.

φ1 = φ10 + ∆φ (2.25)

dφ3 = π/2 + 2φ1 − φ4 = π/2 + 2φ1 + 2∆φ− 2φ1 + φ3 − π/2 = φ3 + 2∆φ (2.26)
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Figure 2.2: Phase changes and power flow through four-wave mixing controlling a degenerate wave

dφ4 = 2φ1 − φ3 + π/2 = 2φ10 + 2∆φ− φ3 + π/2 = φ4 + 2∆φ (2.27)

Similiar to the the above discussion it can be seen, that power will be transferred from A1 to A3 and A4

if the phase difference is n · π, and from A3 and A4 to A1 if the phase difference is (2n− 1) · π/2.

As a consequence we can deduct that we need to apply the phase shift for the degenerate wave (in a
degenerate configuration) if we want to regenerate a BPSK signal. In this paper we will focus on the
latter, which is usually referred to as a double pump or degenerate signal/idler configuration. From now
on we will call the waves pump1, signal and pump2. Let us solve the equation for the signal in the
undepleted pump approximation.

dAs
dz

= iγ · 2A∗sAp1Ap2 (2.28)

Let us select the phases of pump1 and pump2 so that the coefficient of A∗s be real.

dAs
dz

= C ·A∗s (2.29)

where C = iγ · 2Ap1Ap2. Let us use z = x+ i · y, and so we get for the real and imaginary components

∂As
∂x

= CARs (2.30)

∂As
∂y

= −CAIs (2.31)

where ARs and AIs denote the real and imaginary component of As. The solutions are

ARs = CR exp(Cx) (2.32)

and

AIs = CI exp(−Cy) (2.33)

resulting in

As = CR exp(Cz) + iCI exp(−Cz). (2.34)

which clearly shows that the imaginary component of the signal is suppressed while the real component
is amplified.
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2 FOUR-WAVE MIXING FOR PHASE-SENSITIVE AMPLIFICATION

Despite being unsuitable for BPSK regeneration, the undepleted pump configuraion is often important
too. Let us now try a similar derivation for the signal and idler using the undepleted pump approximation.

dAs
dz

= iγ · 2A2
pA
∗
i (2.35)

dAi
dz

= iγ · 2A2
pA
∗
s (2.36)

Let us use the constantC = γ2A2
p and assume the phase of the pump is zero without the loss of generality.

dAs
dz

= iCA∗i (2.37)

dAi
dz

= iCA∗s (2.38)

Then we get

dAs
dz

= iCARi + CAIi (2.39)

dAi
dz

= iCARs + CAIs (2.40)

dARs
dx

= CAIi
dAIs
dy

= CARi

dARi
dx

= CAIs
dAIi
dy

= CARs

(2.41)

Let us differentiate the first equation again

d2ARs
dx2

= C
dAIi
dx

= C2ARs (2.42)

Similarly

d2AIs
dy2

= C
dARi
dy

= C2AIs (2.43)

which gives for the signal

As(z) = C1e
Cz + C2e

−Cz + i
(
C3e

Cz + C4e
−Cz) (2.44)

for the idler we get

Ai(z) = i
(
C1e

Cz − C2e
−Cz)− C3e

Cz + C4e
−Cz (2.45)

Let us choose 0 for the input signal phase and π/2 for the idler, which gives the highest phase-sensitive
amplification as seen before. In this case As(0) = A and Ai(0) = iA. This gives C1 +C2 = C1−C2 =
A, thus, C1 = A, C2 = 0.

As(z) = AeCz (2.46)

Ai(z) = iAeCz (2.47)
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3 CASCADED SECOND-ORDER NONLIENARITIES FOR PHASE-SENSITIVE
AMPLIFICATION

Next, let us see what happens to the imaginary component of some small imaginary input signal (e.g.
noise) keeping the idler stable. In this caseA = C3 +C4 andC1 +C2 = 0. This givesC1 = −C2 = A/2
and C3 = C4 = A/2.

As(z) = A/2eCz −A/2e−Cz + i(A/2eCz +A/2e−Cz) (2.48)

Ai(z) = i
(
A/2eCz +A/2e−Cz

)
−A/2eCz +A/2e−Cz (2.49)

If we neglect the decaying components we get

As(z) = A/2eCz + iA/2eCz (2.50)

Ai(z) = iA/2eCz −A/2eCz (2.51)

Finally, let us check the powers if we apply an input signal with the opposite sign than the maximum gain
phase. This means C1 +C2 = −A, C3 +C4 = 0, C1−C2 = A, and C3 = C4. This gives C3 = C4 = 0
and C2 = −A, C1 = 0.

As(z) = −Ae−Cz (2.52)

Ai(z) = iAe−Cz (2.53)

Which gives purely decaying components. Finally, what happens if we have no idler present: C1 = C2,
C3 = C4, C1 = C2 = A/2, C3 = C4 = 0. In this case we get

As(z) = A/2eCz +A/2e−Cz (2.54)

Ai(z) = i
(
A/2eCz −A/2e−Cz

)
(2.55)

Which means that in the phase insensitive mode the parametric amplifier gives 6dB lower gain the the
phase-sensitive amplifier.

3 Cascaded second-order nonlienarities for phase-sensitive amplification

Despite the many differences between the two, second-order nonlinearities can be exploited for phase-
sensitive operation much like third-order nonlienarities. Second-order are not present in optical fibers
due to the molecular symmetry of the SiO2 molecule. For this purpose nonlinear optical crystals can be
used.

The problem with second order nonlinearities compared with third-order nonlinearities is that the inter-
acting waves fall into different wavelength domains of the material. This gives fundamentally different
refractive indices for the interacting waves, which destroys phase matching (∆k). One solution is to
exploit crystal birefringence by using nonparallel polarization states for the input waves. Although this
process can theoretically provide perfect phase matching, in practice it is very sensitive and compli-
cated to perform. Another solution is to periodically invert the crystal structure of the material, thus,
effectively inverting the sign of the phase mismatch. This process – Quasi Phase Matching – provide
somewhat lower nonlinear conversion efficiency than traditional phase matching, still, it is more feasible
due to its simpler alignment, and the fact, that input signals can be paralelly polarized in this case. The
coupled mode equations describing three-wave mixing are [southampton]

dEp(z)

dz
= −−αp

2
Ep(z) + iκppωpESH(z)E∗p(z)ei∆kppz (3.1)
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dESH(z)

dz
= −αSH

2
ESH(z) + iκppωpE

2
pe
−i∆kppz + 2iκsiωpEs(z)Ei(z)e

i∆ksiz (3.2)

dEs(z)

dz
= −αs

2
Es(z) + iκsiωsESH(z)E∗i (z)e−i∆ksiz (3.3)

dEi(z)

dz
= −αi

2
Ei(z) + iκsiωiESH(z)E∗s (z)e−i∆ksiz (3.4)

The phase mismatches for the pump and the signal+idler are

∆kpp = kSH − 2kp −
2π

Λ
(3.5)

∆ksi = ks + ki − kSH −
2π

Λ
(3.6)

The coupling coefficients are

κpp = deff

√
2µ0

cn2
pnSHAeff

(3.7)

κsi = deff

√
2µ0

cnsninSHAeff
(3.8)

Neglecting propagation losses and phase mismatch we get

dEp(z)

dz
= iκppωpESH(z)E∗p(z) (3.9)

dESH(z)

dz
= iκppωpE

2
p(z) + 2iκsiωpEs(z)Ei(z) (3.10)

dEs(z)

dz
= iκsiωsESH(z)E∗i (z) (3.11)

dEi(z)

dz
= iκsiωiESH(z)E∗s (z) (3.12)

As can be seen, the phases relations of the signal, idler and pump are almost exactly the same as for the
undepleted pump four-wave mixing. The only difference here is the phase relations’ absolute value as
here all phases should be zero for amplification whereas in the FWM case one of the was at π/2.

4 Experimental results

We have demonstrated record phase-sensitive amplification in a PPLN waveguide with the idler wave
generated in HNLF. The experimental set-up and the phase-sensitive gain function can be seen in figure
4.2 and 4.1. For the next step, we demonstrated regeneration of BPSK signals based on phase-sensitive
amplfication. The resulting constellation diagrams can be seen in figure 4.3. The input signal heavily
degraded by phase noise is clearly better on the phase-sensitive amplifier output.
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Figure 4.1: Experimental setup for measuring phase-sensitive operation in PPLNs

Figure 4.2: PPLN phase-sensitive characteristics
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Figure 4.3: BPSK phase regeneration using PPLN
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