
 

Budapesti Mszaki Egyetem 

Távközlési és Médiainformatikai Tanszék 

Load Balancing Algorithms in Multipath Networks 

 

Pro Progressio alapítvány számára készítette:  
Németh Krisztián 

egyetemi tanársegéd 
 

Budapest 

2011. december 



 2 

  

 

Abstract 

This report examines different traffic splitting strategies for multipath IP networks. The 
question is whether today’s widely deployed algorithms perform well in all situations. We 
have implemented in a simulator and analyzed different well-known algorithms. 
Throughout our study several kinds of traffic traces have been used: real ones captured 
at backbones as well as at access networks, and specially derived, hypothetical traces. 
Based on the results we argue that the answer to the leading question is fairly negative: 
there can be several realistic scenarios, where more sophisticated methods seem to be 
required. 



 3 

 

Table of Contents 

Abstract ................................................................................................................................................................. 2 

Problem statement................................................................................................................................................. 4 

Problem statement................................................................................................................................................. 4 

Definition of load balancing, multipath routing.................................................................................................... 4 

Problems with multipath routing ......................................................................................................................... 4 

Possible solutions ............................................................................................................................................... 5 

Flow-based traffic splitting............................................................................................................................. 5 

Flowlet-based traffic splitting ......................................................................................................................... 5 

Application scenarios.......................................................................................................................................... 6 

Scope of this report............................................................................................................................................. 7 

Path utilization fairness ..................................................................................................................................7 

Packet reordering ........................................................................................................................................... 7 

Router state.................................................................................................................................................... 7 

Related works........................................................................................................................................................ 8 

Proposed algorithms............................................................................................................................................ 10 

Simulation methodology...................................................................................................................................... 11 

Measured metrics.............................................................................................................................................. 11 

Path utilization fairness ................................................................................................................................ 11 

Packet reordering ......................................................................................................................................... 11 

Router state.................................................................................................................................................. 11 

Examined packet traces..................................................................................................................................... 12 

Real packet traces.........................................................................................................................................12 

Derived packet traces ................................................................................................................................... 12 

Results ................................................................................................................................................................. 13 

Summary ............................................................................................................................................................. 14 

References............................................................................................................................................................ 15 

 



 4 

Problem statement 

Definition of load balancing, multipath routing 

In IP networks the main task of a network operator is to transfer the traffic offered by its 
costumers through its network. The art of mapping the traffic to the network, i.e., selecting which 
paths to use for which part of the traffic, is called Traffic Engineering (TE for short). In some TE 
methods there is only one route in the network between a data source (sender) and the destination 
(receiver). Other TE algorithms, however, allow for “load balancing”, which means that the 
traffic between a sender and a receiver can be distributed over several (partly disjoint) routes.  

Load balancing thus enables the operator to send a higher volume of traffic through its network 
between an ingress and an egress point, by using the parallel paths. It also improves fault 
tolerance, as a link or node failure may only affect part of the traffic, not the total volume. 
Moreover, the affected part might be redirected to one of the other, undamaged paths. 

In IP networks, finding the path for a data packet is called “routing”, and when several parallel 
paths can be used, it is called “multipath routing”. Multipath routing is thus an implementation of 
the load balancing scheme in IP routing. 

Problems with multipath routing 

Although multipath routing has got several benefits, if it is implemented on a per packet basis, 
multiple problems can arise [RFC2991]. Among these problems perhaps the most important one 
is the possibility of packet reordering, which can easily occur if using different paths between a 
source – destination pair causes different delay times during the transmission. In this case 
directing the first packet to the slower path and the next one to the faster can result in the 
situation when the second packet arrives first, if the difference of the path delays is smaller than 
the difference of the packet sending times. This packet reordering confuses the majority of the 
TCP versions: after receiving more than two out-of-order packets, they enter a so-called fast-
retransmit mode, in which the late packets are unnecessarily retransmitted. This retransmission 
causes excessive bandwidth usage, excess delay in the data transfer and lower overall throughput. 

Packet reordering is not the only problem, though. IP networks utilize an algorithm called path 
MTU (Maximum Transmission Unit) discovery, which is used to determine the maximal length 
of an IP packet that can be sent through a series of lower-layer links without fragmentation. As 
the maximum supported MTU is a property of a link between two IP nodes (including its 
endpoints), if packets are taking different routes between a source – destination pair, the path 
MTU discovery algorithm may fail to provide a correct MTU.  

The third possible problem is related to network debugging. Frequently used tools, like ping and 
traceroute rely on the fact that consequent packets will take the same route, and may provide 
incorrect results if this is not the case. 

Finally, another, perhaps less important negative aspect of using multiple paths for a single flow 
is the possibility of increased jitter, which again stems from the different delays of different 
routes. 



 5 

Possible solutions 

Flow-based traffic splitting 

The classic solution to the problems sketched above is to pin one flow to one path. The question 
is, what is a considered to be a “flow” in this regard? Different papers and different products use 
different definitions for this, but usually a flow means a series of IP packets with the following 
three IP header fields being identical: “source address”, “destination address” and “protocol 
number”. Moreover, if the applied transport layer protocol is UDP or TCP, the “source port” and 
“destination port” fields of the TCP/UDP header should be identical as well. 

Handling the flows as one unit as described above allows utilizing multiple paths between a 
source – destination par, while eliminating the out-of-order packet delivery problem. This is 
because although the total in-order packet delivery is not guaranteed this way, for every single 
TCP or UDP session the packets are kept in order. In other words each TCP or UDP endpoint 
will see the incoming packets in order, thanks to that fact that each flow is bound to a single path.  

Unfortunately this method is not without drawbacks, either. The per-packet assignment to the 
paths is very flexible in term of equally sharing the traffic between the outgoing paths, but it 
might shuffle the packet order. The per-flow approach guarantees in-order delivery, but on the 
other hand it might be problematic to achieve an equal load on the paths. In the case of a large 
number of relatively little flows (meaning flows with small bandwidth, i.e. few packets per time 
unit) we expect no problem of traffic splitting. However, if we have a small number of large 
flows, then we might run into trouble assigning them the paths in a way that results in equal size 
of traffic on them. As an extreme example, it is clearly impossible to fairly distribute four equally 
large flows between three outgoing paths. 

Flowlet-based traffic splitting 

As a solution to this, Kandula et al. had an interesting proposal [Kandula07]. Their idea is 
relatively simple. Basically each flow is bound to a given output, just as in the previous case. 
Here, however, the routers measure for each flow the difference between the arrival times of the 
consecutive packets of the flow. If this difference is larger than the delay difference of two given 
output paths, then the flow can be reassigned form one path to the other without the risk of the 
latter packet overtaking the former one.  

Formally, if da and db are the delays of path a and path b, and t1 and t2 are the arrival times of 
packets P1 and P2, respectively, then the flow can be reassigned from path a to path b, before 
sending out packet P2, if 12 ttdd ba −>− . 

Such a situation is shown in Figure 1 below. 

 

a 

b 

P1 P2 

 

 

a 

b 

P1 

P2  



 6 

 

a 

b 

P1 P2 

 

Figure 1. Path change without packet reordering 

Looking from the ingress router’s point of view, a flow is a series of packets with similar IP 
headers and different arrival time differences between the consecutive packets. Some packets 
arrive close to each other, some have larger gaps in between. We call a “flowlet” a set of 
consecutive packets of the flow, where the time differences between the neighbouring packets are 
all smaller then a given 

�
t value, but the time difference before the first packet and the time 

difference after the last one are both larger than 
�

t. Thus a flow can be seen as a series of 
flowlets. This principle is explained on Figure 2. 

 

P P P P P P P P P P P P P 

time 
flowlet flowlet flowlet flowlet flowlet 

�
t 

 

Figure2. Flowlets visualized 

 

If 
�

t is larger than the delay difference of path a and path b, then the flow can me moved from 
path a to b between two flowlets. This certainly means that if the delay is smaller on the original 
path than the on new one, then the flow can be reassigned between any two packets, regardless of 
the arrival time difference. 

The proposed solution uses active probing to keep track of the delays of different paths. It also 
stores information for each flow: the timestamp of the last arrived packet and the assigned path is 
recorded in a hash table. When a packet arrives, this table is looked up using the flow 
identification information in the packet header, i.e. the source and destination addresses and 
ports. If the actual time minus the timestamp of the last arrived packet is less than 

�
t, then the 

stores path is used for this packet as well. If not, a new flowlet is beginning, thus it might be 
relocated, if desired. Finally, the packet is sent out and the hash record is updated. 

This flowlet-based approach seems to be a good tradeoff between the packet-based and the flow-
based traffic splitting: it avoids the problem of out-of-order packets, while still providing 
reasonably equal traffic splitting. On the other hand it requires active probing of the path delays, 
plus storing state information for each flow. 

Application scenarios 

Traffic splitting based load balancing can be used in several parts of an IP network. In this 
subsection a couple of application scenarios are listed, as possible examples. 

Let us start with one of the most important fields of application: the already introduced multipath 
routing. The OSPF routing protocol [RFC2328] for example supports this via a method called 
Equal Cost Multipath (ECMP).  

Another application scenario is the case of local networks [IEEE802]: originally the IEEE 
802.3ad task force created a standard for Ethernet, called Link Aggregation. The idea here is two 



 7 

use parallel links between two neighboring Ethernet nodes to achieve higher throughput and/or to 
employ redundancy for the case of link failure. Later on this part of the standard has been moved 
to 802.1, when IEEE 802.1AX-2008 came out. 

Moreover, the same idea might be used for example within multi-core network processors to 
distribute load between its cores [FeiHe08]. A network processor is microprocessor specifically 
designed for networking equipments, such as routers, firewalls, etc. If it is made of multiple 
cores, the same problem of packet order preserving arises, with the same possible solutions. 

Scope of this report 

This report compares different traffic splitting algorithms considering several performance 
metrics, such as the following: 

Path utilization fairness 

The splitting algorithm should provide fair balancing of the load on the output paths. However, it 
does not necessarily mean, that all output path should be loaded equally. Generally, if the number 
of output paths is n, it should be possible to provide a set of weight f1, f2, ..., fn, such that 

1
1

=∑
=

n

i
if . Given these weights, if the total volume of the incoming traffic from a flow in a given 

time interval is t (measured in bytes or in packets), the volume of traffic on the outgoing links 
should be as close as possible to 1ft ⋅ , 2ft ⋅ , ..., nft ⋅ . 

Packet reordering 

The number of out-of-order packets should be minimal. Zero is the desired value; however, a 
small percentage of such packets can be an acceptable trade-off for other kinds of benefits. 

Router state 

Keeping state on a per flow basis allows great flexibility in mapping flows to arbitrary output 
paths, but on the other hand it might be costly in terms of router memory. Other, for example 
hash based methods use router memory more sparingly, but perhaps at a cost of the path 
utilization fairness being degraded.  



 8 

Related works 

The idea of the flowlets was published in [Kandula07]. This paper has an earlier, in many 
respects more detailed version, [Sinha04], which was published in HotNets04. These papers have 
surprisingly few follow-up publications, and even those consider flowlets as a complete, finished 
research. These papers usually just mention that there are basically three kinds of traffic-splitting 
algorithms: packet based, flow based and flowlet-based.  

One of these papers is [Yun08], which deals with the basic problem of traffic engineering: given 
a traffic matrix, which changes dynamically and given a network, which route should be used for 
which part of the traffic? In their approach, several routes can be used simultaneously between 
two endpoints. The proposed method pins a flow to a path, and only mentions the possibility of 
using flowlets. [Merindol08] and [Kandula05] are similar to the previous paper from our point of 
view: they describe TE algorithms using flow-based splitting, and solely mentioning the option of 
flowlets.  

[Ye04] analyzes the utility of multipath routing in mobile ad-hoc networks (MANETs). It shows 
that the benefits of using load balancing in MANETs are not clearly overweight the drawbacks. 
For example, while for long TCP connections using multipath is usually advantageous, for short 
TCP connections it can be worse than using a single path.  

[He08] is a literature survey about multipath routing. It mentions flowlets in its place, but delivers 
no further added value.  

[FeiHe08] is perhaps the only real follow-up of [Kandula07]: it applies the idea of flowlets for 
multi core network processors, where the incoming packets are processed in parallel. The 
problem here is very similar to the multipath routing case, and so is the proposed solution: neither 
single packets, nor flows, but flowlets should be assigned to a given waiting queue. 

Another interesting case of the traffic splitting problem is depicted in [Kandula08]. In this 
scenario a single WiFi network card with a special device driver was used to connect to two 
Access Points (APs) at the same time. This is done so that the two uplinks of the two APs can be 
used simultaneously, thus doubling the throughput, if the uplinks of the APs are independent. The 
authors here are not using flowlet-based splitting, but are using flow-based division for several 
reasons. One of them is that the different APs assign different IP addresses to the node, but 
certainly the sender IP address of an outgoing flow must not change during its lifetime. 

[Wu09] deals with packet reordering in line cards before transferring them to the CPU. Although 
the topic is a bit distant from our current work, this paper well summarizes the problems of TCP 
stemming from out-of-order packets and the different attempts trying to overcome these 
problems.  

Some IETF RFCs and Internet Drafts are closely related to this work, too. [RFC2991] has already 
been mentioned: it summarizes the problems with multipath routing. It also suggests different 
algorithms on how to assign flows to paths. [RFC2992] compares these algorithms, considering 
how many flows has to be reassigned to another path if the number of paths change (by plus or 
minus one). [Yong10a] and [Yong10b] are expired Internet Drafts. Their basic idea is promising: 
treat “large flows” and “small flows” differently (by, for example, storing a state for the large 
ones and using a hash for the small ones). These drafts proposed to use one bit in the IP header 
for this distinction. The idea was rejected though in the appropriate IETF working group, as all 
the functionality can be done in a single box, and thus there is no need to change the IP header.  

[RFC6438] describes the usage of the flow label field of the IPv6 header in the case of tunneling. 
It explains, why it is necessary, and also illustrates, why it can be problematic to use, as 
[RFC2460] and [RFC3697] strictly regulate the usage of this IPv6 header field. Another work, 



 9 

[Kompella11] deals with a somewhat similar situation: in MPLS networks TCP flows directed to 
the same destination are bound together into a Label Switched Path (LSP), and it requires a deep 
packet inspection to distinguish the original flows. This operation, however, is problematic in 
many ways. [Kompella11] suggests to use a special label, called the “entropy label”, to 
distinguish the flows within an LSP, and thus to help making a useful load balancing. It has to be 
noted, that this [Kompella11] is a work in progress, but as the IETF MPLS working group have 
accepted it as a working group item, it is like to finally become an RFC. Also note, that barely the 
existence of [RFC6438] and [Kompella11] emphasize the importance of the researched topic. 

Pinning a flow (or a flowlet) to an output path can be done in different ways. One of them is to 
store in a router state for each flow, which path to use. Another way is to use some kind of a hash 
function on the flow identifier, and decide on the output path based on the output of the function. 
An interesting hashing algorithm is presented in [Thaler98], called the Highest Random Weight. 
The basic idea (slightly modified, to be applied to our problem) is to include the identifier of the 
output paths in the input of the hash function. Using this algorithm the amount of the rerouted 
flows can be kept minimal, if the number of the output paths changes. 

Talking about hash functions, it is important, which part of the IP header should be included in 
the function input. It is also advantageous to know if a flow-splitting algorithm should be 
restricted to TCP flows, or UDP should be considered as well. [Lee09] is related to these 
questions, as it is about observing TCP/UDP ratio and TCP, UDP port distributions using very 
different kinds of packet traces. The main massage here is: traces from different parts of the 
network or from different years show very different statistical behavior, thus it is very hard to 
state anything. Nevertheless, the UDP/TCP ratio in the examined traces was mainly between 5-
20%, but without any visible trend. 

Another idea mentioned earlier in this section is to treat large and small flows differently. A key 
question here is how to identify a large flow. [Mori04] proposes an algorithm that can identify 
large flows (so-called “elephants”) from packet samples, thus largely reducing the required 
packet processing.  



 10 

Proposed algorithms 

Our long-term goal is to further improve the flowlet-based traffic splitting described in 
[Kandula07]. One way of the possible improvement is to realize their idea without active probing. 
Another way is to reduce the amount of states stored about flows: either to decrease it 
considerably, or to propose a totally stateless design.  

As a first step to this, we have summed up to requirements as follows. A packet enters the router, 
and the routing algorithm comes up with several possible output links. The question is, which one 
to use for the particular packet. The design goals are the following:  

• keep each flow on the same path, if possible; 

• the actual proportion of the traffic on each output link should be as close as possible to the 
desired f1, f2, ..., fn set of weights; 

• use minimal (or zero) amount of router states; 

• use a simple, fast algorithm; 

• if the number of output paths, or their weights changes, the amount of rerouted flow 
should be minimal. 

Note that these requirements are partly contradicting each other. Also note that the last 
requirement is out of our scope in the first phase of the research. 

As a first approach, we have examined some simple algorithms: 

Method 1: random. In this case a discrete random variable is chosen according to the set of 
weights, and the packet is sent out on the path corresponding to the random variable. This method 
is fast, stateless and simple, but does not pin the flows to paths. 

Method 2: simple best fit. This algorithm keeps track of the total traffic sent out on each possible 
outgoing link. Let us denote with g1, g2, ..., gn the amount of traffic (measured either in bytes or in 
packets) on each outgoing link. Let then  

∑
=

= n

j
j

i
i

g

g
h

1

 

denote the observed split rate. Now, after the arrival of a new packet the router checks the desired 
and the observed split rate for each link, and selects the link that is most underutilized in this 
sense, i.e. where hi-fi is the smallest. This method is also fast and simple, but requires storing of 
some router state, although fairly little. On the other hand, this method is not suitable for keeping 
a flow on a single path, either. 

Method 3: simple hashing. In this case when a new packet arrives, a hash function is executed 
with the flow ID as the input. Note that the flow ID can be defined in many ways. Here we have 
chosen to use the source and destination IP addresses and the source and destination ports. Note 
also that we run our measurement for TCP packets only. The output space of the hash function is 
divided into n regions, such that the size of each region is proportional the weights f1, f2, ..., fn. 
This algorithm is a bit more complex than the previous ones, but it is flow-based and require no 
router state at all. 

Method 4: flow-based best fit. This algorithm is another extreme: it stores a state for every single 
flow. When a new flow arrives, it is assigned to the most underutilized path, as described in 
Method 2. This comes with using up a large amount of router space, but hopefully results in 
better utilization fairness. Naturally it keeps each flow on a single path. 



 11 

Simulation methodology 

This section describes the metrics used in the analysis and the scenarios we have examined. 

Measured metrics 

Path utilization fairness 

As a first step, we have calculated the observed split rate, hi, as defined in the previous section. 
Secondly, we have calculated the fairness error, defined as  

 iii hfr −= .  

However, a single fairness error number for each link is not enough, as if a link is under-utilized 
for say a second, and overloaded for the next one, it would show in average a nice fair behavior, 
which is a false result. Therefore we calculated this fairness error periodically, at every 
t=0.1..1000 sec, depending on the path utilization. The aim was to keep the number of packets in 
one period around 10 000-30 000, resulting in a total of 10-20 megabytes per period.  

At the end of the file processing, we have calculated the link average of fairness errors above all 

the periods, separately for each link, resulting in ir . Taking the average of these for all the links, 

we gained a single number, the average fairness error, 

  ∑
=

=
n

i
irr

1

.  

We made these calculations twice: once deriving hi from the number of the packets, and the other 
time from the total length of the packets on a link. 

We have also calculated the maximum error for each link between the periods, r imax, and taking 
the maximum of those gave the total maximum, rmax. 

Note that we represent all errors as a relative percentage of fi. This means for example that if a 
link should have a share of 25% of the traffic, but it gets say the 30% of it, then the error is 

 %20
%25

%30
1 =− .  

Packet reordering 

The number of out-of-order packets should be minimal. Zero is the desired value; however, a 
small percentage of such packets can be an acceptable trade-off for other kinds of benefits. 

Router state 

Keeping state on a per flow basis allows great flexibility in mapping flows to arbitrary output 
paths, but on the other hand it might be costly in terms of router memory. Other, for example 
hash based methods use router memory more sparingly, but perhaps at a cost of the path 
utilization fairness being degraded. 



 12 

Examined packet traces 

We have analyzed real-life, anonymized traffic traces, taken at different parts of the Internet. The 
algorithms described in the previous section were implemented in Perl, using the Pcap library for 
captured packet file processing. Only the TCP packets were dealt with, but by far the majority of 
all the packets were actually TCP packets. The assumption was that all these packets are traveling 
to the same direction (at least in the beginning of their paths), and a load sharing algorithm 
distributes them amongst n outgoing links, with the weights f1, f2, ..., fn. In our simulation n was 4, 
and f1 = f2 = f3 = f4 = 0.25. 

Real packet traces 

Dataset1 has been downloaded from [CAIDA], and contains anonymized passive traffic traces 
from CAIDA's “equinix-chicago” monitor on an OC192 Internet backbone link. The snapshot has 
been taken at January 2009.  

Dataset2 is from [SWEB], Trace 4: “the 1 Gbit/s aggregated uplink of an ADSL access network 
has been monitored. A couple of hundred ADSL customers, mostly student dorms, are connected 
to this access network. Access link speeds vary from 256 kbit/s (down and up) to 8 Mbit/s (down) 
and 1 Mbit/s (up). The average load on the aggregated uplink is around 150 Mbit/s. These 
measurements are from February - July 2004.” The actual file used is loc4-20040208-2001.bz2.  

Dataset3 is from the same trace collection as Dataset2, the examined file is loc4-20040214-
0410.bz2.  

Dataset4 is also from [SWEB], Trace 6: “a 100 Mbit/s Ethernet link connecting an educational 
organization to the internet has been measured. This is a relatively small organization with 
around 35 employees and a little over 100 students working and studying at this site (the 
headquarter location of this organization). All workstations at this location (100 in total) have a 
100 Mbit/s LAN connection. The core network consists of a 1 Gbit/s connection. The recordings 
took place between the external optical fiber modem and the first firewall. The measured link was 
only mildly loaded during this period. These measurements are from May - June 2007.” The 
selected file is loc6-20070501-2055.gz. 

Dataset5 is from the same trace collection as Dataset3, but the file is loc6-20070523-0005.gz. 

Note that these are fairly large (several gigabytes long) files, and we have only used the first few 
seconds of them. 

Derived packet traces 

Dataset6: “tunnels”. When tunneling is heavily used, few, but very large flows represent the 
majority of the traffic. In this case we expect the conventional algorithms to act rather weakly. 
Unfortunately, it is not easy to get such a trace. Therefore we have created Dataset6 as follows: 
each flow in Dataset1 has been assigned a random number x between 1 and 6. If x was between 1 
and 5, then the packet header has been modified to some predefined IP source address, 
destination address, TCP source port, destination port values, such that they seem to form 5 
streams, emulating 5 tunnels. If x was 6, then the packets are left unmodified, representing some 
background traffic along with the tunnels. 

Dataset7: “mice, pigs, elephants”. The ratio of small/ medium/large sized flows is expected to be 
crucial from the path utilization fairness point of view. Small flows are usually called “mice”, 
large ones are referred to as “elephants”. We have enhanced this a bit, introducing a middle size 
category, named as “pigs”.  The flows in the first 9 million packets of Dataset1 have been 
categorized into these three sets, having the limits at 10 000 and 1 000 000 bytes. With these 



 13 

settings we found 249 860 mice, 24 964 pigs and 455 elephants. From these flows we have 
selected 100 mice, 100 pigs and 10 elephants, thus getting Dataset7. 

Results 

This chapter summarizes the results of the analysis, grouped by datasets. The shown fairness 
errors are relative errors, as described in the previous section. 

TABLE I. summarizes the average and maximal errors for the packet numbers and packet sizes 
for the different methods for Dataset1. 

TABLE I.  FAIRNESS ERROS IN DATASET1 

 Avg, Avg, size Max, Max, 
Method 0.77% 1.24% 2.36% 3.83% 
Method 1.06% 0.01% 3.90% 0.02% 
Method 4.08% 1.64% 11.42% 8.40% 
Method 3.44% 5.15% 10.38% 17.67% 

 

These numbers show that the non-trivial methods 3 and 4 have a considerable maximal error, 
even for this fairly large and evenly loaded link. For methods 1 and 2 the error is much smaller, 
but keep in mind that they are not preserving the packet order.  

As expected, the stateful, and thus more “expensive”, flow-based best fit (Method 3) produces 
better results than the stateless simple hashing (Method 4) regarding the packet sizes. On the 
other hand, Method 4 performs slightly better for packet numbers: this is because the “best-fit” 
optimization in Method 3 was tuned to packet sizes rather than packet numbers. 

The results for the other datasets are shown in TABLE II.  

TABLE II.  FAIRNESS ERROS IN DATASETS2-7 

 Avg, Avg, size Max, Max, size 
Ds2, M3 6.77% 3.33% 21.34% 20.48% 
Ds2, M4 6.49% 13.91% 23.77% 41.86% 
Ds3, M3 5.23% 2.53% 16.65% 17.32% 
Ds3, M4 5.29% 8.57% 14.84% 22.84% 
Ds4, M3 31.94% 34.85% 83.78% 196.42% 
Ds4, M4 44.45% 66.36% 127.54% 257.68% 
Ds5, M3 97.41% 139.02% 291.65% 297.45% 
Ds5, M4 115.89% 143.89% 298.42% 299.54% 
Ds6, M3 32.17% 32.34% 42.33% 43.92% 
Ds6, M4 83.17% 82.99% 121.63% 122.57% 
Ds7, M3 22.23% 12.24% 51.80% 49.78% 
Ds7, M4 21.77% 57.42% 61.44% 133.72% 
 

From TABLE II. the results for the first two methods have been omitted to save space, as their 
practical usage is very limited, and they have been already shown in Table I for comparison. 

TABLE III. below shows the number of flows for each trace. This shows the approximate volume 
of state that should be stored using Method 3. 

TABLE III.  FLOW NUMBERS IN THE DATASETS 

Ds1 Ds2 Ds3 Ds4 Ds5 Ds6 Ds7 



 14 

67 580 43 168 35 854 5 200 1 238 11 251 210 

 

The main conclusion form the above results is that the widely used hashing algorithm has a huge 
error not only for the derived, but for the real datasets, too. In some situations Method3 performs 
better, but in one of the access network traces, it also produces errors up to 300%.  

Summary 

In this report we have overviewed the different traffic splitting algorithms that can be used for 
load balancing. After an elaborated introduction to the topic and to the related works, a 
simulation study has been described.  

We have set up an experimental framework for comparing different splitting algorithms using 
different metrics. For this examination several traffic traces have been used: partly from real 
networks (both core and access), and partly artificially derived ones, emulating a tunneling 
scenario, and a hypothetical, future network load. 

Our results show, that the today widely used flow-based methods seem to perform acceptably on 
a backbone router. In the access network, however, the link utilization fairness measure might 
show several hundred percents of error, showing that more sophisticated methods are required 
here. Regarding the derived traces, like the tunneling scenario, the classical algorithms again 
perform unacceptably.  

This shows that further studies and probably more sophisticated algorithms are required in this 
field, as the widely deployed flow-based algorithm seem to be just not good enough in many 
practical cases. 



 15 

References 

[CAIDA] Colby Walsworth, Emile Aben, kc claffy, Dan Andersen: The CAIDA 
Anonymized 2009 Internet Traces, 20090115: equinix-chicago.dirA.20090115-
130000.UTC.anon.pcap, 
http://www.caida.org/data/passive/passive_2009_dataset.xml 

[FeiHe08] Fei He, Yaxuan Qi, Yibo Xue, Jun Li: Load Scheduling for Flow-based Packet 
Processing on Multi-Core Network Processors, Parallel and Distributed 
Computing and Systems    (PDCS 2008), November 16 – 18, 2008, Orlando, 
Florida, USA 

[He08] Jiayue He, J. Rexford: Toward internet-wide multipath routing, IEEE Network 
Magazine, March-April 2008, Volume: 22 Issue:2, pp. 16 – 21, ISSN: 0890-8044 

[IEEE802] IEEE 802 series standards are available at http://standards.ieee.org/getieee802 

[Kandula05] Srikanth Kandula, Dina Katabi, Bruce Davie, Anna Charny: Walking the 
Tightrope: Responsive Yet Stable Traffic Engineering, ACM SIGCOMM, August 
2005, Philadelphia, PA, USA 

[Kandula07] Srikanth Kandula, Dina Katabi, Shantanu Sinha, Arthur Berger: Dynamic load 
balancing without packet reordering, ACM SIGCOMM Computer 
Communication Review, Volume 37 Issue 2, April 2007, Pp. 51-62, ACM New 
York, NY, USA 

[Kandula08] Srikanth Kandula, Kate Ching-Ju Lin, Tural Badirkhanli, Dina Katabi: FatVAP: 
Aggregating AP Backhaul Capacity to Maximize Throughput, 5th USENIX 
Symposium on Networked Systems Design and Implementation, San Francisco, 
CA, USA, April 16-18, 2008 

[Kompella11] K. Kompella, J. Drake, S. Amante, W. Henderickx, L. Yong: The Use of Entropy 
Labels in MPLS Forwarding, IETF draft (i.e., work in progress), draft-ietf-mpls-
entropy-label-01, October 31, 2011, expires: May 3, 2012 

[Lee09] DongJin Lee, Brian E. Carpenter, Nevil Brownlee: Observations of UDP to TCP 
Ratio and Port Numbers, Fifth International Conference on Internet Monitoring 
and Protection (ICIMP), 9-15 May 2010, Barcelona, Spain. Print ISBN: 978-1-
4244-6726-6, Pp. 99-10 

[Merindol08] Merindol, P., Pansiot, J.-J.. Cateloin, S.: Improving Load Balancing with Multipath 
Routing, Proceedings of 17th International Conference on Computer 
Communications and Networks, 2008 (ICCCN '08), 3-7 Aug. 2008, St. Thomas, 
US Virgin Islands, pp 1-8 

[Mori04] Tatsuya Mori, Masato Uchida, Ryoichi Kawahara, Jianping Pan, Shigeki Goto: 
Identifying Elephant Flows Through Periodically Sampled Packets, Proceedings of 
the 4th ACM SIGCOMM conference on Internet measurement (IMC '04), 
Taormina, Italy, October 25-27, 2004, ISBN: 1-58113-821-0, Pp. 115-120 

[RFC2328] J. Moy: OSPF Version 2, IETF RFC 2328, April 1998 

[RFC2460] S. Deering, R. Hinden: Internet Protocol, Version 6 (IPv6) Specification, IETF 
RFC 2460, December 1998 

[RFC2991] D. Thaler, C. Hopps: Multipath Issues in Unicast and Multicast Next-Hop 
Selection, IETF RFC 2991, November 2000 



 16 

[RFC2992] C. Hopps: Analysis of an Equal-Cost Multi-Path Algorithm, IETF RFC 2992, 
November 2000 

[RFC3697] J. Rajahalme, A. Conta, B. Carpenter, S. Deering, IPv6 Flow Label Specification, 
IETF RFC 3697, March 2004 

[RFC6438] B. Carpenter, S. Amante: Using the IPv6 Flow Label for Equal Cost Multipath 
Routing and Link Aggregation in Tunnels, IETF RFC 6438, November 2011 

[SWEB] SimpleWeb trace files, http://traces.simpleweb.org/ 

[Sinha04] Sinha, Kandula, Katabi: Harnessing TCP’s Burstiness with Flowlet Switching, 3rd 
ACM SIGCOMM Workshop on Hot Topics in Networks (HotNets), November 
2004, San Diego, CA, USA 

[Thaler98] David G. Thaler, Chinya V. Ravishankar: Using Name-Based Mappings to 
Increase Hit Rates, IEEE/ACM Transactions on Networking (TON), Vol. 6, No. 1, 
February 1998, Pp. 1-14 

[Wu09] Wenji Wu, Phil Demar, Matt Crawford: Sorting Reordered Packets with Interrupt 
Coalescing, Computer Networks: The International Journal of Computer and 
Telecommunications Networking, Volume 53 Issue 15, October, 2009, Pp. 2646-
2662, Elsevier North-Holland, Inc. New York, NY, USA, ISSN: 1389-1286 

[Ye04] Zhenqiang Ye, Krishnamurthy, S.V., Tripathi, S.K.: Effects of multipath routing 
on TCP performance in ad hoc networks, Global Telecommunications Conference, 
2004. GLOBECOM '04. IEEE, 29 Nov.-3 Dec. 2004, pp 4125 - 4131 (Vol.6) 

[Yong10a] L. Yong, P. L. Yang: Large Flow Classification in IPv6 Protocol, expired IETF 
draft (i.e., abandoned work), draft-yong-6man-large-flow-classification-00.txt, 
June 18, 2010 

[Yong10b] L. Yong, P. L. Yang: Large Flow Classification in Flow Aware Transport over 
PSN, expired IETF draft (i.e., abandoned work), draft-yong-pwe3-lfc-fat-pw-
01.txt, July 11, 2010 

[Yun08] Jung-Hoon Yun, Anseok Lee, Song Chong: Multi-path Aggregate Flow Control 
for Real-time Traffic Engineering, Global Telecommunications Conference, 2008. 
(IEEE GLOBECOM), Nov. 30 2008-Dec. 4 2008, New Orleans, LO, USA, pp. 1-5 


