r
A L}
I}

T v TR
= =

e L
e] ld o) 4 MU T LLLLLLLY

s [[AARARARARAAR [0

Budapesti Miszaki Egyetem
Tavkozlési és Médiainformatikai Tanszék

Load Balancing Algorithms in Multipath Networks

Pro Progressio alapitvany szamara készitette:
Németh Krisztian

egyetemi tanarsegéd

Budapest
2011. december

Abstract

This report examines different traffic splitting strategies for multipath IP networks. The
guestion is whether today’s widely deployed algorithms perform well in all situations. We
have implemented in a simulator and analyzed different well-known algorithms.
Throughout our study several kinds of traffic traces have been used: real ones captured
at backbones as well as at access networks, and specially derived, hypothetical traces.
Based on the results we argue that the answer to the leading question is fairly negative:
there can be several realistic scenarios, where more sophisticated methods seem to be
required.

Table of Contents

Y 011 = T PP PUPPPPTS 2
(0] o] =T 4IRS e= 1 (=70 1T o | TSSO PPPPRR 4
(0] o] =T 4IRS F= 1 (=10 1T o | TSSO PPPRR 4
Definition of load balancing, MUItIPAth FOULING. .. cceererrteii e 4
Problems With MUITIPATN FOULINGeeeiiititi e e e e et e e e e e e e et e e e abbb b r e e e e e e eeeeeeenes 4
POSSIDIE SOIULIONS ...t ettt e oo et ettt bbbt e e e e e e e et e e e e abbb e e e e s 5
Flow-based traffic SPIHIING........ooeiiiiiii e ettt e e e e e e e e eeaeaae 5
Flowlet-based traffic SPHIINGooie e 5
FaY o]l Tor= o g I Tot=T o = T4 o ST RSSPPPPN 6
Yoo oL i1 T IS I £=7 oo] SO PPPT 7
Path UIlIZAtioN FAIMESSoiiiiiiiiiii e e e e et e e e e e e et e e bbb e e e e aeeeas ..
= 1o S R £=To) 0 =T 4 o [P P SUPPPPPPPPRPPR 1.
ROULET SEATE ... ittt ettt ettt e et e et e e et e e e e r e e 7
T E= 1=To I o T PP PSP 8
PropoSed AlgOMTNMS. et r e e e et b bbb eees 10
SIMUIAtiIoN METNOUOIOGY ...ttt et e e ettt e e e e e e e ettt et e bbb r e e e e e e eeeeeeeeneaas 11
=T R U =To [0 T ol PP SSPPPP 11
Path ULIlIZAtION FAIMESSoiiiiiiiiiiii e e e e e et e e e e e e e e e e ettt e e e e e e e e 11
= 1o I £=To] {0 =T 4 o [P S SUOPPPPPPPRPPPTPIN 11
ROULET SEATE ...ttt ettt oot e e et e e e e et e e et e e e e e e e e 11
EXAMINEA PACKET TTrACES. ...ttt e e e e e e e e e e ettt ettt e e e e e e e e e 12
REAI PACKET TrACES. ...ttt e ettt e e e e e e e b 12
DEIIVEA PACKET tTAICES ...t ee ettt e ettt e e ettt ettt et b e e e et e et ettt bbb e e e e e e e e e e e eeeeaeaa s 12
RESUITS ...t e e oo e e e e e e oo ettt et bbb e e e e e e et te bt aaeeeeeee 13
SUIMIMIATY ettt 4422144444444 et e e et et 4ot e et e e a4 oo et e bt e et e e e e et e e e e e e e e nnnas 14
T2 =T ot TP PSP 15

Problem statement

Definition of load balancing, multipath routing

In IP networks the main task of a network operatotoidransfer the traffic offered by its
costumers through its network. The art of mapping tHédta the network, i.e., selecting which
paths to use for which part of the traffic, is calleaffic Engineering (TE for short). In some TE
methods there is only one route in the network betweakataasource (sender) and the destination
(receiver). Other TE algorithms, however, allow fdoad balancing”, which means that the
traffic between a sender and a receiver can be distdmter several (partly disjoint) routes.

Load balancing thus enables the operator to send a highene of traffic through its network
between an ingress and an egress point, by using the ppathes. It also improves fault
tolerance, as a link or node failure may only affect pdrthe traffic, not the total volume.
Moreover, the affected part might be redirected toafribe other, undamaged paths.

In IP networks, finding the path for a data packet is dditeuting”, and when several parallel
paths can be used, it is called “multipath routing”. Muaith routing is thus an implementation of
the load balancing scheme in IP routing.

Problems with multipath routing

Although multipath routing has got several benefits, i§ itmplemented on a per packet basis,
multiple problems can arise [RFC2991]. Among these probfesrisaps the most important one
is the possibility of packet reordering, which can easdgur if using different paths between a
source — destination pair causes different delay timesglutie transmission. In this case
directing the first packet to the slower path and thet o@e to the faster can result in the
situation when the second packet arrives first, ifdifierence of the path delays is smaller than
the difference of the packet sending times. This packetieeing confuses the majority of the

TCP versions: after receiving more than two out-of-onuckets, they enter a so-called fast-
retransmit mode, in which the late packets are unnedgssgtransmitted. This retransmission

causes excessive bandwidth usage, excess delay in theadatar and lower overall throughput.

Packet reordering is not the only problem, though. IP netwatikze an algorithm called path
MTU (Maximum Transmission Unit) discovery, which is dde determine the maximal length
of an IP packet that can be sent through a series of-layer links without fragmentation. As
the maximum supported MTU is a property of a link betweea t® nodes (including its
endpoints), if packets are taking different routes betwa source — destination pair, the path
MTU discovery algorithm may fail to provide a correct MTU.

The third possible problem is related to network debuggireguently used tools, like ping and
traceroute rely on the fact that consequent packetgak# the same route, and may provide
incorrect results if this is not the case.

Finally, another, perhaps less important negative agperting multiple paths for a single flow
is the possibility of increased jitter, which againnstefrom the different delays of different
routes.

Possible solutions

Flow-based traffic splitting

The classic solution to the problems sketched abowe pstone flow to one path. The question
is, what is a considered to be a “flow” in this regdabdfferent papers and different products use
different definitions for this, but usually a flow meanseaies of IP packets with the following
three IP header fields being identical: “source addres®stination address” and “protocol
number”. Moreover, if the applied transport layer protas UDP or TCP, the “source port” and
“destination port” fields of the TCP/UDP header shoulddeatical as well.

Handling the flows as one unit as described above alloising multiple paths between a
source — destination par, while eliminating the out-of-onplecket delivery problem. This is
because although the total in-order packet delivery is noagigad this way, for every single
TCP or UDP session the packets are kept in order. Im othels each TCP or UDP endpoint
will see the incoming packets in order, thanks to thattFat each flow is bound to a single path.

Unfortunately this method is not without drawbacks, eitfidgre per-packet assignment to the
paths is very flexible in term of equally sharing thdfizébetween the outgoing paths, but it
might shuffle the packet order. The per-flow approach guees in-order delivery, but on the

other hand it might be problematic to achieve an equaldoathe paths. In the case of a large
number of relatively little flows (meaning flows witimall bandwidth, i.e. few packets per time
unit) we expect no problem of traffic splitting. Howevérwe have a small number of large

flows, then we might run into trouble assigning them thégat a way that results in equal size
of traffic on them. As an extreme example, it isachg impossible to fairly distribute four equally

large flows between three outgoing paths.

Flowlet-based traffic splitting

As a solution to this, Kandula et al. had an intengsproposal [KandulaO7]. Their idea is

relatively simple. Basically each flow is bound taisen output, just as in the previous case.
Here, however, the routers measure for each flowdifference between the arrival times of the
consecutive packets of the flow. If this differencéaigier than the delay difference of two given
output paths, then the flow can be reassigned formpatte to the other without the risk of the

latter packet overtaking the former one.

Formally, if d, andd, are the delays giath aandpath b, andt; andt, are the arrival times of
packetsP1 andP2, respectively, then the flow can be reassigned fpath ato path b before
sending out packd2, if d, —d, >t, —t,.

Such a situation is shown in Figure 1 below.

Figure 1. Path change without packet reordering

Looking from the ingress router’s point of view, a flowasseries of packets with similar IP
headers and different arrival time differences betwthe consecutive packets. Some packets
arrive close to each other, some have larger gaps inebetwWe call a “flowlet” a set of
consecutive packets of the flow, where the time ifiees between the neighbouring packets are
all smaller then a givent value, but the time difference before the first packed the time
difference after the last one are both larger thanThus a flow can be seen as a series of
flowlets. This principle is explained on Figure 2.

R
— — -
flowlet flowlet flowlet flowlet flowlet

Figure2. Flowlets visualized

If 4t is larger than the delay difference dth aandpath b then the flow can me moved from
path ato b between two flowlets. This certainly means that & delay is smaller on the original
path than the on new one, then the flow can be grassibetween any two packets, regardless of
the arrival time difference.

The proposed solution uses active probing to keep track afdlags of different paths. It also
stores information for each flow: the timestamp @f kst arrived packet and the assigned path is
recorded in a hash table. When a packet arrives, thie tablooked up using the flow
identification information in the packet header, i.ee Source and destination addresses and
ports. If the actual time minus the timestamp of the dasted packet is less thaft, then the
stores path is used for this packet as well. If not,va fl@wlet is beginning, thus it might be
relocated, if desired. Finally, the packet is sent adtthe hash record is updated.

This flowlet-based approach seems to be a good tradeofébetine packet-based and the flow-
based traffic splitting: it avoids the problem of outenfler packets, while still providing
reasonably equal traffic splitting. On the other hamequires active probing of the path delays,
plus storing state information for each flow.

Application scenarios

Traffic splitting based load balancing can be used irers¢ parts of an IP network. In this
subsection a couple of application scenarios are liageppssible examples.

Let us start with one of the most important fieldsapplication: the already introduced multipath
routing. The OSPF routing protocol [RFC2328] for example sippbis via a method called
Equal Cost Multipath (ECMP).

Another application scenario is the case of locdivaeks [IEEE802]: originally the IEEE
802.3ad task force created a standard for Ethernet, cali&dAlggregation. The idea here is two

6

use parallel links between two neighboring Ethernet naxashieve higher throughput and/or to
employ redundancy for the case of link failure. Latethos part of the standard has been moved
to 802.1, when IEEE 802.1AX-2008 came out.

Moreover, the same idea might be used for example withitti-core network processors to
distribute load between its cores [FeiHe08]. A netwmndcessor is microprocessor specifically
designed for networking equipments, such as routers, fiewsk. If it is made of multiple
cores, the same problem of packet order preserving arigkshessame possible solutions.

Scope of this report

This report compares different traffic splitting algbms considering several performance
metrics, such as the following:

Path utilization fairness

The splitting algorithm should provide fair balancing of kied on the output paths. However, it
does not necessarily mean, that all output path sheuldidoled equally. Generally, if the number
of output paths is, it should be possible to provide a set of weifjhtf,, ..., f,, such that

Z f. =1. Given these weights, if the total volume of theaming traffic from a flow in a given
i=1

time interval ist (measured in bytes or in packets), the volume affitron the outgoing links
should be as close as possible fd, , tCf,, ..., t [, .

Packet reordering

The number of out-of-order packets should be mihitdaro is the desired value; however, a
small percentage of such packets can be an acteptadbe-off for other kinds of benefits.

Router state

Keeping state on a per flow basis allows greatilfigty in mapping flows to arbitrary output
paths, but on the other hand it might be costlyerms of router memory. Other, for example
hash based methods use router memory more sparioglyperhaps at a cost of the path
utilization fairness being degraded.

Related works

The idea of the flowlets was published in [KandulaO7]. Tpeger has an earlier, in many
respects more detailed version, [Sinha04], which was publishddtNetsO4. These papers have
surprisingly few follow-up publications, and even those aw®rsilowlets as a complete, finished
research. These papers usually just mention that &éinereasically three kinds of traffic-splitting

algorithms: packet based, flow based and flowlet-based.

One of these papers is [Yun08], which deals with the @sislem of traffic engineering: given

a traffic matrix, which changes dynamically and givareawork, which route should be used for
which part of the traffic? In their approach, severaiteés can be used simultaneously between
two endpoints. The proposed method pins a flow to a path,only mentions the possibility of
using flowlets. [Merindol08] and [Kandula05] are similar e fprevious paper from our point of
view: they describe TE algorithms using flow-based spijitand solely mentioning the option of
flowlets.

[Ye04] analyzes the utility of multipath routing in mab#d-hoc networks (MANETS). It shows
that the benefits of using load balancing in MANETS arectesirly overweight the drawbacks.
For example, while for long TCP connections using muhips usually advantageous, for short
TCP connections it can be worse than using a single path.

[HeO08] is a literature survey about multipath routing. éntions flowlets in its place, but delivers
no further added value.

[FeiHeO08] is perhaps the only real follow-up of [KandulaO7lpplies the idea of flowlets for
multi core network processors, where the incoming pacaéetsprocessed in parallel. The
problem here is very similar to the multipath routingegaand so is the proposed solution: neither
single packets, nor flows, but flowlets should be amsigto a given waiting queue.

Another interesting case of the traffic splitting lplem is depicted in [Kandula08]. In this

scenario a single WiFi network card with a special dediceer was used to connect to two

Access Points (APs) at the same time. This is dorikagdhe two uplinks of the two APs can be
used simultaneously, thus doubling the throughput, if the uptihits®e APs are independent. The
authors here are not using flowlet-based splitting, beituaing flow-based division for several

reasons. One of them is that the different APs asdifferent IP addresses to the node, but
certainly the sender IP address of an outgoing flow moisthange during its lifetime.

[Wu09] deals with packet reordering in line cards beforestesining them to the CPU. Although
the topic is a bit distant from our current work, thipgrawell summarizes the problems of TCP
stemming from out-of-order packets and the different attentpting to overcome these
problems.

Some IETF RFCs and Internet Drafts are closelyedléd this work, too. [RFC2991] has already
been mentioned: it summarizes the problems with nathipouting. It also suggests different
algorithms on how to assign flows to paths. [RFC2992] corspituese algorithms, considering
how many flows has to be reassigned to another palie ihtmber of paths change (by plus or
minus one). [Yong10a] and [Yong10b] are expired Interneft®ra@heir basic idea is promising:
treat “large flows” and “small flows” differently (byfor example, storing a state for the large
ones and using a hash for the small ones). These draftesed to use one bit in the IP header
for this distinction. The idea was rejected though & dppropriate IETF working group, as all
the functionality can be done in a single box, and these is no need to change the IP header.

[RFC6438] describes the usage of the flow label field @fi#v6 header in the case of tunneling.
It explains, why it is necessary, and also illustratgBy it can be problematic to use, as
[RFC2460] and [RFC3697] strictly regulate the usage of this Healer field. Another work,

8

[Kompellall] deals with a somewhat similar situationMiRLS networks TCP flows directed to
the same destination are bound together into a Lab&tt®d Path (LSP), and it requires a deep
packet inspection to distinguish the original flows. Thiemtion, however, is problematic in
many ways. [Kompellall] suggests to use a special labé&dcthe “entropy label”, to
distinguish the flows within an LSP, and thus to help ingla useful load balancing. It has to be
noted, that this [Kompellall] is a work in progress, buhaedETF MPLS working group have
accepted it as a working group item, it is like to finakkgedme an RFC. Also note, that barely the
existence of [RFC6438] and [Kompellall] emphasize the impoetaf the researched topic.

Pinning a flow (or a flowlet) to an output path can be diongifferent ways. One of them is to
store in a router state for each flow, which pathge. Another way is to use some kind of a hash
function on the flow identifier, and decide on the otypath based on the output of the function.
An interesting hashing algorithm is presented in [Thaler€8]ed the Highest Random Weight.
The basic idea (slightly modified, to be applied to owbfam) is to include the identifier of the
output paths in the input of the hash function. Using déflg®rithm the amount of the rerouted
flows can be kept minimal, if the number of the outpuhpahanges.

Talking about hash functions, it is important, which pdrthe IP header should be included in
the function input. It is also advantageous to know ifloav-splitting algorithm should be
restricted to TCP flows, or UDP should be consideredval. [Lee09] is related to these
guestions, as it is about observing TCP/UDP ratio and TEH, port distributions using very
different kinds of packet traces. The main massage igerteaces from different parts of the
network or from different years show very differetatstical behavior, thus it is very hard to
state anything. Nevertheless, the UDP/TCP ratio ired@mined traces was mainly between 5-
20%, but without any visible trend.

Another idea mentioned earlier in this section is ¢attlarge and small flows differently. A key
guestion here is how to identify a large flow. [MoriO4] poses an algorithm that can identify
large flows (so-called “elephants”) from packet samplidwus largely reducing the required
packet processing.

Proposed algorithms

Our long-term goal is to further improve the flowletddstraffic splitting described in
[Kandula07]. One way of the possible improvement is &tize their idea without active probing.
Another way is to reduce the amount of states storemitaffows: either to decrease it
considerably, or to propose a totally stateless design.

As a first step to this, we have summed up to requirenasnisllows. A packet enters the router,
and the routing algorithm comes up with several possilgieud links. The question is, which one
to use for the particular packet. The design goals ar®libeving:

keep each flow on the same path, if possible;

the actual proportion of the traffic on each output lintudth be as close as possible to the
desiredf, f,, ...,f, set of weights;

use minimal (or zero) amount of router states;
use a simple, fast algorithm;

if the number of output paths, or their weights changfes,amount of rerouted flow
should be minimal.

Note that these requirements are partly contradictiagh eother. Also note that the last
requirement is out of our scope in the first phase eféisearch.

As a first approach, we have examined some simple Higgi

Method 1: randomin this case a discrete random variable is choserrdingoto the set of
weights, and the packet is sent out on the path corrdsgpto the random variable. This method
is fast, stateless and simple, but does not pin tinsflo paths.

Method 2: simple best fifThis algorithm keeps track of the total traffic sent @uteach possible
outgoing link. Let us denote with, g, ...,gn the amount of traffic (measured either in bytes or in
packets) on each outgoing link. Let then

h=-IJ_
2.9,
j=1

denote the observed split rate. Now, after the arof/alnew packet the router checks the desired
and the observed split rate for each link, and seléetdiik that is most underutilized in this
sense, i.e. where-f; is the smallest. This method is also fast and sijplerequires storing of
some router state, although fairly little. On the othend, this method is not suitable for keeping
a flow on a single path, either.

Method 3: simple hashindn this case when a new packet arrives, a hash funtiexecuted
with the flow ID as the input. Note that the flow IDncbe defined in many ways. Here we have
chosen to use the source and destination IP addressdeaswlrce and destination ports. Note
also that we run our measurement for TCP packets oh& otlitput space of the hash function is
divided inton regions, such that the size of each region is prapatithe weightds, fa, ..., fn.
This algorithm is a bit more complex than the previous ,Onessit is flow-based and require no
router state at all.

Method 4: flow-based best fil his algorithm is another extreme: it stores a gtatevery single
flow. When a new flow arrives, it is assigned to thest underutilized path, as described in
Method 2. This comes with using up a large amount of ragace, but hopefully results in
better utilization fairness. Naturally it keeps edolwfon a single path.

10

Simulation methodology

This section describes the metrics used in the analyditha scenarios we have examined.

Measured metrics

Path utilization fairness

As a first step, we have calculated the observed rspét hi, as defined in the previous section.
Secondly, we have calculated the fairness error, detise

I :‘fi _h‘

However, a single fairness error number for eachinkot enough, as if a link is under-utilized

for say a second, and overloaded for the next oneguldishow in average a nice fair behavior,
which is a false result. Therefore we calculated tlaisness error periodically, at every

t=0.1..1000sec, depending on the path utilization. The aim was&p kee number of packets in

one period around 10 000-30 000, resulting in a total of 10-20 meggi®it@eriod.

At the end of the file processing, we have calculateditik average of fairness errors above all
the periods, separately for each link, resulting_iinTaking the average of these for all the links,
we gained a single number, the average fairness error,

r=>r.
i=1
We made these calculations twice: once deritirigom the number of the packets, and the other

time from the total length of the packets on a link.

We have also calculated the maximum error for eachdetkveen the periodsimax, and taking
the maximum of those gave the total maximum,

Note that we represent all errors as a relative peagendff,. This means for example that if a
link should have a share of 25% of the traffic, but isgaty the 30% of it, then the error is

_30%
25%

1 =20%-

Packet reordering

The number of out-of-order packets should be minimal. Zeithhe desired value; however, a
small percentage of such packets can be an acceptabletifaleother kinds of benefits.

Router state

Keeping state on a per flow basis allows great flexjbih mapping flows to arbitrary output
paths, but on the other hand it might be costly in tesfmsouter memory. Other, for example
hash based methods use router memory more sparinglypebhéps at a cost of the path
utilization fairness being degraded.

11

Examined packet traces

We have analyzed real-life, anonymized traffic trataeen at different parts of the Internet. The
algorithms described in the previous section were implezdeintPerl, using the Pcap library for
captured packet file processing. Only the TCP packets werevddglbut by far the majority of
all the packets were actually TCP packets. The assumpésrthat all these packets are traveling
to the same direction (at least in the beginning efrtpaths), and a load sharing algorithm
distributes them amongstoutgoing links, with the weights, f,, ..., . In our simulatiom was 4,
andflz f2: f3: f4: 0.25

Real packet traces

Datasetlhas been downloaded from [CAIDA], and contains anonymizesdiyeasraffic traces
from CAIDA's “equinix-chicago” monitor on an OC192 Interiaickbone link. The snapshot has
been taken at January 2009.

Dataset2is from [SWEB], Trace 4: “the 1 Gbit/s aggregated uplinkroA®DSL access network

has been monitored. A couple of hundred ADSL customerg)ynstgdent dorms, are connected
to this access network. Access link speeds vary from 256 kdown and up) to 8 Mbit/s (down)

and 1 Mbit/s (up). The average load on the aggregated upliakoisnd 150 Mbit/s. These

measurements are from February - July 2004.” The actealded is loc4-20040208-2001.bz2.

Dataset3is from the same trace collection Bataset? the examined file is loc4-20040214-
0410.bz2.

Dataset4is also from [SWEB], Trace 6: “a 100 Mbit/s Etherneklconnecting an educational
organization to the internet has been measured. Thisredatively small organization with
around 35 employees and a little over 100 students workidgsamdying at this site (the
headquarter location of this organization). All workstagi@t this location (100 in total) have a
100 Mbit/s LAN connection. The core network consists of@Gbit/s connection. The recordings
took place between the external optical fiber modem laadirst firewall. The measured link was
only mildly loaded during this period. These measurementsrane May - June 2007.” The
selected file is loc6-20070501-2055.9z.

Dataset5is from the same trace collection@ataset3 but the file is loc6-20070523-0005.9z.

Note that these are fairly large (several gigabyteg)l@iles, and we have only used the first few
seconds of them.

Derived packet traces

Dataset6 “tunnels” When tunneling is heavily used, few, but very large flowseasgmt the
majority of the traffic. In this case we expect thesentional algorithms to act rather weakly.
Unfortunately, it is not easy to get such a trace. dibee we have creatddataset6as follows:
each flow inDatasetlhas been assigned a random numideetween 1 and 6. ¥was between 1
and 5, then the packet header has been modified to poedefined IP source address,
destination address, TCP source port, destination portsyadueh that they seem to form 5
streams, emulating 5 tunnelsxifvas 6, then the packets are left unmodified, represesing
background traffic along with the tunnels.

Dataset7 “mice, pigs, elephants”. The ratio of small/ medilarge sized flows is expected to be
crucial from the path utilization fairness point of vie@mall flows are usually called “mice”,
large ones are referred to as “elephants”. We have eatidhis a bit, introducing a middle size
category, named as “pigs”. The flows in the firsm@lion packets ofDatasetlhave been
categorized into these three sets, having the limits02000 and 1 000 000 bytes. With these

12

settings we found 249 860 mice, 24 964 pigs and 455 elephants. Freenflthes we have
selected 100 mice, 100 pigs and 10 elephants, thus getiaget7

Results

This chapter summarizes the results of the analysisipgrb by datasets. The shown fairness
errors are relative errors, as described in the pregecison.

TABLE I. summarizes the average and maximal errorghferpacket numbers and packet sizes
for the different methods fdbatasetl

TABLE I. FAIRNESS ERROS INDATASETL
Avg, Avg, size Max, Max,
Method |0.77% [1.24% |2.36% |3.83%
Method |1.06% | 0.01% | 3.90% | 0.02%
Method |{4.08% |1.64% |11.42% |8.40%
Method | 3.44% 5.15% 10.38% 17.67%

These numbers show that the non-trivial methods 3 ahdvé a considerable maximal error,
even for this fairly large and evenly loaded link. For mdghb and 2 the error is much smaller,
but keep in mind that they are not preserving the packet.order

As expected, the stateful, and thus more “expensive”,-flaged best fit (Method 3) produces
better results than the stateless simple hashing (Methoelgdjding the packet sizes. On the
other hand, Method 4 performs slightly better for packenlers: this is because the “best-fit”
optimization in Method 3 was tuned to packet sizes rakizar packet numbers.

The results for the other datasets are shown in TABLE

TABLE II. FAIRNESS ERROS INDATASETS2-7

Avg, Avg, size Max, Max, size

Ds2, M3 |6.77% [3.33% [21.34% |20.48%

Ds2, M416.49% | 13.91% | 23.77% 41.86%

Ds3, M3 |5.23% [2.53% [16.65% |17.32%

Ds3, M4|5.29% | 8.57% | 14.84% 22.84%

D4, M3 |131.94% |34.85% [83.78% |196.42%

Ds4, M4 |44.45% | 66.36% | 127.549257.68%

Ds5, M3 |197.41% |139.02%]| 291.65%| 297.45%

Ds5, M4 | 115.89%] 143.89%)] 298.42%| 299.54%

Ds6, M3 |32.17% |32.34% [42.33% |43.92%

Ds6, M4 83.17% | 82.99%| 121.63%422.57%

Ds7, M3 |22.23% [12.24% [51.80% |49.78%

Ds7, M4|21.77% | 57.42%| 61.44% 133.72%

From TABLE II. the results for the first two methodave been omitted to save space, as their
practical usage is very limited, and they have beeadrshown in Table | for comparison.

TABLE lll. below shows the number of flows for eaithce. This shows the approximate volume
of state that should be stored using Method 3.

TABLE III. FLOW NUMBERS IN THE DATASETS

Ds1 Ds2 Ds3 Ds4 | Ds5 | Ds6 Ds7

13

67 580| 43 168| 35 854| 5 200| 1 238| 11 251| 210

The main conclusion form the above results is thatwidely used hashing algorithm has a huge
error not only for the derived, but for the real dataggets In some situations Method3 performs
better, but in one of the access network tracedsat produces errors up to 300%.

Summary

In this report we have overviewed the different traffditting algorithms that can be used for
load balancing. After an elaborated introduction to theictand to the related works, a
simulation study has been described.

We have set up an experimental framework for comparingrdiit splitting algorithms using
different metrics. For this examination several tcaffaces have been used: partly from real
networks (both core and access), and partly artificidtlyived ones, emulating a tunneling
scenario, and a hypothetical, future network load.

Our results show, that the today widely used flow-basethods seem to perform acceptably on
a backbone router. In the access network, howeveljntheitilization fairness measure might

show several hundred percents of error, showing tloae reophisticated methods are required
here. Regarding the derived traces, like the tunnelingasicerthe classical algorithms again

perform unacceptably.

This shows that further studies and probably more sophedicgorithms are required in this
field, as the widely deployed flow-based algorithm seenbeégust not good enough in many
practical cases.

14

References

[CAIDA] Colby Walsworth, Emile Aben, kc claffy, Dan rilersen: The CAIDA
Anonymized 2009 Internet Traces, 20090115: equinix-chicago.dirA.20090115-
130000.UTC.anon.pcap,
http://www.caida.org/data/passive/passive_2009 dataset.xml

[FeiHeO08] Fei He, Yaxuan Qi, Yibo Xue, Jun lLioad Scheduling for Flow-based Packet
Processing on Multi-Core Network ProcessorfParallel and Distributed
Computing and Systems (PDCS 2008), November 16 — 18, 2008, Orlando,
Florida, USA

[HeO08] Jiayue He, J. Rexfordoward internet-wide multipath routindEEE Network
Magazine, March-April 2008, Volume: 22 Issue:2, pp. 16 — 21, ISSN:-8699

[[EEE802] IEEE 802 series standards are availabtétat/standards.ieee.org/getieee802

[Kandula05] Srikanth Kandula, Dina Katabi, Bruce Davie, An@aarny: Walking the
Tightrope: Responsive Yet Stable Traffic Engineerdk@M SIGCOMM, August
2005, Philadelphia, PA, USA

[KandulaO7] Srikanth Kandula, Dina Katabi, Shantanu Siréhur Berger:Dynamic load
balancing without packet reordering ACM SIGCOMM Computer
Communication Review, Volume 37 Issue 2, April 2007, Pp. 51-&yIANew
York, NY, USA

[Kandula08] Srikanth Kandula, Kate Ching-Ju Lin, Tural Bllddmli, Dina Katabi:FatVAP:
Aggregating AP Backhaul Capacity to Maximize Throughfih USENIX
Symposium on Networked Systems Design and Implemeniafian Francisco,
CA, USA, April 16-18, 2008

[Kompellall] K. Kompella, J. Drake, S. Amante, W. Hendexj L. Yong: The Use of Entropy
Labels in MPLS ForwardinglETF draft (i.e., work in progress), draft-ietf-mpls
entropy-label-01, October 31, 2011, expires: May 3, 2012

[Lee09] DongJin Lee, Brian E. Carpenter, Nevil Brownl@éservations of UDP to TCP
Ratio and Port NumbeygFifth International Conference on Internet Monitoring
and Protection (ICIMP), 9-15 May 2010, Barcelona, SpaimtR8BN: 978-1-
4244-6726-6, Pp. 99-10

[Merindol08] Merindol, P., Pansiot, J.-J.. Cateloin,|&proving Load Balancing with Multipath
Routing Proceedings of 17th International Conference on Compute
Communications and Networks, 2008 (ICCCN '08), 3-7 Aug. 2008, $mas,

US Virgin Islands, pp 1-8

[Mori04] Tatsuya Mori, Masato Uchida, Ryoichi Kawahargning Pan, Shigeki Goto:
Identifying Elephant Flows Through Periodically Sampled Pacltsceedings of
the 4th ACM SIGCOMM conference on Internet measurem@itC '04),
Taormina, Italy, October 25-27, 2004, ISBN: 1-58113-821-0, Pp. 115-120

[RFC2328] J. MoyOSPF Version 2IETF RFC 2328, April 1998

[RFC2460] S. Deering, R. Hindeimternet Protocol, Version 6 (IPv6) SpecificatjoiETF
RFC 2460, December 1998

[RFC2991] D. Thaler, C. HoppsMultipath Issues in Unicast and Multicast Next-Hop
Selection IETF RFC 2991, November 2000

15

[RFC2992]
[RFC3697]
[RFC6438]

[SWEB]
[Sinha04]

[Thaler98]

[Wu09]

[YeO04]

[Yongl0a]

[Yong10b]

[Yuno8g]

C. HoppsAnalysis of an Equal-Cost Multi-Path AlgorithirETF RFC 2992,
November 2000

J. Rajahalme, A. Conta, B. Carpenter, S. Bgdiv6 Flow Label Specificatign
IETF RFC 3697, March 2004

B. Carpenter, S. Amante: Using the IPv6 Flow L&reEqual Cost Multipath
Routing and Link Aggregation in Tunnels, IETF RFC 6438, Noverabé1l

SimpleWeb trace files, http://traces.simpleveeg/

Sinha, Kandula, Kataliiarnessing TCP’s Burstiness with Flowlet Switchi8ed
ACM SIGCOMM Workshop on Hot Topics in Networks (HotNetslpovember
2004, San Diego, CA, USA

David G. Thaler, Chinya V. Ravishankdysing Name-Based Mappings to
Increase Hit RatedEEE/ACM Transactions on Networking (TON), Vol. 6, .Ng
February 1998, Pp. 1-14

Wenji Wu, Phil Demar, Matt Crawfor@orting Reordered Packets with Interrupt
Coalescing Computer Networks: The International Journal of Compuated
Telecommunications Networking, Volume 53 Issue 15, Octat@09, Pp. 2646-
2662, Elsevier North-Holland, Inc. New York, NY, USA, ISSIN889-1286

Zhengiang Ye, Krishnamurthy, S.V., Tripathi, S.Effects of multipath routing
on TCP performance in ad hoc netwqridobal Telecommunications Conference,
2004. GLOBECOM '04. IEEE, 29 Nov.-3 Dec. 2004, pp 4125 - 4131 (Vol.6)

L. Yong, P. L. YangLarge Flow Classification in IPv6 Protocoéxpired IETF
draft (i.e., abandoned work), draft-yong-6man-large-fldassification-00.txt,
June 18, 2010

L. Yong, P. L. YangtLarge Flow Classification in Flow Aware Transport over
PSN expired IETF draft (i.e., abandoned work), draft-yonguic-fat-pw-
01.txt, July 11, 2010

Jung-Hoon Yun, Anseok Lee, Song Choktulti-path Aggregate Flow Control
for Real-time Traffic Engineerindgslobal Telecommunications Conference, 2008.
(IEEE GLOBECOM), Nov. 30 2008-Dec. 4 2008, New Orleans, USA, pp. 1-5

16

