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Abstract

This paper explores the feasibility of content recommendation over interest-aware unstruc-

tured peer-to-peer (P2P) systems where peers sharing similar contents are connected. We

present a novel and simple general metrics, by extending the Sorgenfrei coefficient to measure

content similarities among peers. We provide two simple approximations of the proposed mea-

sure, that can be calculated by aggregating only the pair wise Sorgenfrei similarities, relaying

on certain assumptions of statistical independence in the input data. We conduct experiments

using a massive set of P2P file-sharing data to show that our new similarity measure could

be a good predictor of the recommendation quality in unstructured distributed systems. The

feasibility of finding similar peers in a simple unstructured system is also examined by simu-

lation. We conclude that in unstructured P2P networks, an efficient recommendation system

can be built without relying on any centralized or structured architectural extensions.

1 Introduction

Recommendation systems have gained in both popularity and importance during recent years [16,

23]. The fundamental goal of these systems is to offer content to users that may be in the field of

their interest. Most of them are based on the collaborative filtering [12,21,22] approach. Although

recommendation systems are achieving widespread success on the Web, these solutions are much

less prevalent in non-centralized information systems.

Several unstructured P2P architectures have been proposed in the recent years, based on the

idea of exploiting the semantic or interest-based proximity of the peers [8,9,26,28]. These solutions

extend Gnutella-like unstructured P2P architectures with extra links between peers based on con-

tent or semantic similarities of the shared data. The purpose of these solutions is to improve the

quality and the performance of search, assuming that peers usually search for similar contents to

those they already have. Following the same assumption, our main goal is to examine whether con-

tent recommendation could be possible by using only these interest-based proximity links, without
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laying on any further architectural extensions.

Another important part of designing a good recommendation system in a distributed system

is to find an efficient measure to select neighbouring nodes. The current paper considers the most

restricted – and most realistic – scenario when no semantic meta-data is available and the similarity

measurement can only be based on the number of the common files between the participating peers.

By extending the Sorgenfrei set similarity measure, we present a novel scalar measure of similarity

between a set and collection of other sets, which, as we show later, could be used as a good forecaster

of the performance of the recommendation procedure.

Finally, a very simple unstructured network build-up is simulated, to confirm our initial assump-

tion that these unstructured architectures give feasible ways to find nodes sharing similar contents,

and to give a hint about the cost-performance trade-off of these solutions.

The rest of the paper is organized as follows. In Section 2 the related work is presented. As

one of the main contribution of this paper, in Section 4 our new similarity measure is introduced.

Section 6 contains our examinations of the achievable recommendation quality, and the evaluation

of the influencing factors. In Section 6.5 we present the results of our architectural simulations.

The results of the simulations are summarised in Section 6.6 Finally, Section 7 concludes our work.

2 Related Work

The most simple way to exploit semantic similarities among peers is to extend a simple Gnutella-

like unstructured architecture with interest-based links. Sripanidkulchai et. al. [26] introduced first

these extra links called interest-based shortcuts. During queries these nodes are always searched

for the content, and when none of the shortcuts have it, only then is the query flooded to the

entire system. This result was improved by Voulgaris et. al. [28] examining different strategies of

shortcut selection.

A different approach is to design a structured peer-to-peer architecture to support certain types

of distributed collaborative filtering algorithms [11, 29]. These solutions are based on the idea of

building and managing a large – usually DHT based – distributed database of all shared content

in the system. Although they provide certain guaranties on finding similar contents in the system,

their tighter administrative requirements could make these DHT based systems more sensitive to

failures or to frequent joins and disconnects than the unstructured solutions.

To design a good recommendation system – for a particular data set – empirical work is indis-

pensable. The publicly available Netflix prize [4] solutions [14, 17, 27] are the typical examples of

the usual process of selecting the best solutions by training and testing several different solutions

and their combinations. In P2P networks, the problem is not only to find the best recommendation

algorithm, but to operate it in a distributed manner, without the help of central computing or data

storage units. There are two main types of collaborative filtering algorithms, the neighbourhood-

based, and the model-based approaches [18]. Model-based algorithms work by training a predictive

model using available user ratings. This model can be used later to predict ratings of users for new

items. Model-based methods are not feasible in P2P systems without major simplifications, due to

the difficulty of training and maintaining a predictive model without using centralized resources.

Neighbourhood-based solutions work by making recommendations using the data of similar user

ratings or user profiles directly, and therefore these solutions, utilizing user similarities, fit well to
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P2P architectures.

Since Jaccard proposed [13] his set similarity index in 1901 to measure the diversity of plant

populations, numerous new numerical coefficients were proposed to measure similarities between

binary – presence-absence – data sets. Many of them were also proposed by biologists or botanists

for taxonomic, biogeographic, ecologic or paleoecologic purposes for example, the Dice [10], the

Sørensen [24] or the Sorgenfrei [25] index. Since their initial introduction in ecology, they become

widespread as a standard tool in classification tasks and have been used or for various purposes

such as handwritten character [31] recognition. In recent comparative studies [6, 30], more than

seventy binary similarity indices have been collected, compared and analysed.

3 Data Set

3.1 Technical Details

The simulations presented later on are all based on real-world file-sharing data that have been col-

lected from approximately 50000 different Direct Connect [1] (DC) network nodes. Direct Connect

is a P2P file sharing network. Clients connect to central hubs that provide information of other

clients as well as file searching capabilities. Hubs are not interconnected, but a single peer can

connect to multiple hubs. File transfers are done directly between clients.

<Directory Name="Judas Priest">

<File Name="Freewheel burning.mp3" Size="4232672"

TTH="EW4I3CT57QOGO4PEHZRAAFBX7CDBN2HL6T5NOGY"/>

<File Name="Hell Bent For.mp3" Size="2556656"

TTH="TYNRPZMGPSKQLLRXKAWFMNPZPRSMD2FJNR67FVA"/>

<File Name="Breaking the law.mp3" Size="2487275"

TTH="SMHXNSXA4M55VJ6AMJ4YD3EUPKEQPAGTYCL3CNY"/>

<File Name="Deceiver.mp3" Size="2623529"

TTH="PKWHG2O76WFNKIZRVJPSUYM7D6NNSB47AAV4YIA"/>

<File Name="Before the dawn.mp3" Size="3223719"

TTH="7I7RVZUJFHQ5S5ZBKI5LNM3MJC6BXNEHY5YYBKA"/>

</Directory>

Figure 1: Part of a DC++ XML file list

DC clients also can serve an XML-based list of all their shared files to the other clients. In

Figure 1 you can see part of an example XML file list. The file list contains the name, the size

and a content based hash code of all shared files of a given client. Directory information is also

available.

A modified Direct Connect client program has been used – based on the StrongDC++ [2]

sources – to automate the collection of file lists and to collect more than 50000 lists from peers on

different hubs. The main parameters of the collected data are presented in Table 1.
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File lists downloaded 50106

Total number of shared files 257942017

Number of different shared files 90707624

Sum of the size of shared files 1595.5TB

Table 1: Main parameters of the collected data set

3.2 Pre-processing

The data set has been restricted to mp3 files. This filtering can be viewed as a fast and straightfor-

ward dimensionality reduction: User similarities are considered only in musical taste. As Table 2

shows, nearly half of the distinct files are mp3s in the collected data set.

Nodes containing mp3 34756

Total number of shared mp3 files 68567712

Number of different mp3 files 41102406

Sum of the size of shared mp3 files 368.8TB

Table 2: Main parameters of the shared mp3 files

4 Set Similarity Measurement

The rationale behind basing our examination on using set similarity measures is their simplicity

and usability even in restricted scenarios where only binary – presence-absence – data are available.

To measure similarity between nodes, the Sorgenfrei [25] set similarity coefficient was used.

Definition 1. Given two sets A and B, the Sorgenfrei similarity coefficient is the cardinality of

the intersection squared and divided by the product of the cardinalities of the two sets:

S(A,B) =
|A ∩B|2

|A||B|

In our case, the sets correspond to nodes of the P2P network, and members of a set are the

shared files of the given node.

According to a comparison study of 76 different binary similarity coefficients [6], the behaviour

of the Sorgenfrei coefficient is very similar to the more prevalent Jaccard similarity index. Sorgen-

frei has been chosen over Jaccard because of its linearity, which made possible to give a simple

probabilistic interpretation, and to extend it to measure similarity between a set and a collection

of sets based on this interpretation (see Section 4.1).

The Sorgenfrei distance: D(A,B) = 1−S(A,B) is a semi-metric [30]. Semi-metric is a distance

function D : X ×X → R where:

D(A,B) ≥ 0

D(A,B) = 0 ⇔ A = B
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D(A,B) = D(B,A)

is true for ∀A,B ∈ X

Contrary to other metrics, the Sorgenfrei distance does not fulfil the triangle inequality:

∃A,B,C ∈ X → D(A,C) � D(A,B) + D(B,C)

4.1 Combining Coefficients

A simple probabilistic interpretation of the binary Sorgenfrei similarity coefficient is provided, that

can be used to extend the similarity index to measure similarity between a given set and a collection

of sets.

Our goal is to capture the total amount of information contained by a collection of nodes with

respect to a given node. This can be achieved by a function that is monotone in the sense, that

by extending the set of similar nodes with a new node the aggregated similarity coefficient cannot

decrease. To elaborate such a function the following probabilistic interpretation of the binary

Sorgenfrei similarity coefficient was used:

If a uniform random sample from the set B of size |B ∩ A| is taken, thus each item of set B

will be in that sample with probability |B ∩ A|/|B|, and then a single item from set A is selected

randomly, then that selected item will be part of the sample from B with probability:

|B ∩ A|

|B|

|A ∩B|

|A|
=

|A ∩B|2

|A||B|
= S(A,B)

This is obviously true for two sets because the event that the selected item from set A is in the

intersection, and the event that this particular item is in the random sample from set B, are

independent events.

To ensure our requirement of monotonicity, the aggregated Sorgenfrei similarity index is then

defined the following way:

Definition 2. Let S(A, {B1, B2, . . . , Bk}) be the similarity coefficient of the set A and the collec-

tion of sets {B1, B2, . . . , Bk}, where S(A, {B1, B2, . . . , Bk}) equals the probability, that an element

chosen randomly from set A occurs at least in one of the uniform samples form sets B1, . . . , Bk of

size |B1 ∩ A|, . . . , |Bk ∩ A|

The combined Sorgenfrei similarity index can be calculated by calculating and summing prob-

abilities for each item from set A separately.

Theorem 1. For every item X, let P (Bi, X) = 1/|Bi| if X ∈ Bi, and P (Bi, X) = 0 if X /∈ Bi,

then the aggregated similarity index can be calculated by:

S(A, {B1, B2, . . . , Bk}) = 1−

∑

∀X,X∈A

k
∏

i=1

(1− |A ∩Bi|P (Bi, X))

|A|
(1)

This calculation is based on the fact that the occurrences of a given single element from set A

in the k different samples are independent, therefore the probability of an element X not being

contained in any of the samples, simply equals the product of the individual probabilities: 1− |A∩

Bi|P (Bi, X). Selecting a random element from set A is an independent event, therefore each term

in the sum has to be multiplied by 1/|A|.
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We present two simple approximations, capable of estimating the aggregated similarities using

only the following pairwise Sorgenfrei similarities:

A randomly selected item of A occurs in the random sample from set

• B1 with probability S(A,B1)

• B2 with probability S(A,B2)

...

• Bk with probability S(A,Bk)

Combining these k events under the assumption of independence, gives our first approximation:

S(A, {B1, B2, . . . , Bk}) ≈ 1−
k
∏

i=1

(1− S(A,Bi)) (2)

Unfortunately, these k events are not necessary independent. Only a smaller part of set A is

likely to appear in the sets Bi: the most popular files. Therefore, we propose another approach

for estimation. This time we assume that intersections of set A and sets Bi are highly dependent:

Each intersection is a subset of the largest intersection denoted by ABmax

Definition 3. Let ABmax = max1≤i≤k |A ∩ Bi| be the size of the largest intersection between A

and the sets Bi. Then S(A, {B1, B2, . . . , Bk}) can be approximated by:

S(A, {B1, B2, . . . , Bk}) ≈
ABmax

|A|

[

1−
k
∏

i=1

(

1−
|A ∩Bi|

ABmax |Bi|

)

]

=

=
ABmax

|A|

[

1−
k
∏

i=1

(

1−
|A| S(A,Bi)

ABmax

)

]
(3)

To put it in another way, we compute the simple aggregated similarity index as if the size of

set A was ABmax, which is the smallest imaginable size of set A considering the intersection sizes,

then rescale the result using ABmax/|A|.
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As depicted in Figure 2, which compares the exact similarity indices with our two simple

approximations, in about half of the cases, our simplest estimation gives very good results – points

lying on the identity line, especially in the y < 0.1 domain. In the other cases, this assumption of

independence tends to lead to overestimation. The second, slightly more complicated aggregation

mechanism gives much better results, however in many cases it slightly underestimates the real

values.

Correlation coefficients have been computed between real values and approximations from our

two formulae, using more than 5000 randomly selected nodes with various nearest neighbour num-

bers between 10 and 200. The results are: 0.8527 for the first, and a very high correlation of 0.9843

for our second approximation.

The benefit of using these approximations lies in their simplicity while being nearly as good

indicators of the recommendation performance (see Section 6) as the exact value.

5 Recommendation System

To suggest files to nodes an association rule learning approach has been used [3]. Association

rules have been designed primary for market basket analysis, e.g., to identify customers purchasing

habits, but the idea of using them to make recommendations comes naturally.

As Weiyang Lin et. al. have shown [15], association rule based recommendation can have

significantly better performance than the traditional correlation based approaches.

Definition 4. Let D = B1, B2, B3, . . . , Bk be a collection of sets which are called transactions, and

I = i1, i2, i3, . . . , in be a set of binary attributes called items. Each transaction in D has a unique

transaction ID and contains a subset of the items in I. An association rule is then defined as:

X ⇒ Y

where X,Y ⊆ I and X ∩ Y = ∅. X is called the antecedent, while Y is called the consequent of the

rule.

The rule expresses a connection between X and Y regarding their joint appearances in the sets

of D.

There are several measures of significance to select relevant rules from the set of all possible

rules. The two most widely used constraints are minimum threshold on support and confidence.

Definition 5. The support supp(X) of an item set X is defined as the proportion of transactions

in D that contains the item set X. The confidence of a rule X ⇒ Y is defined as:

conf(X ⇒ Y ) =
supp(X ∪ Y )

supp(X)

For example, conf(X ⇒ Y ) = 0.9 means that 90% of all transactions containing X also contain

Y .

Confidence is not a good measure when the support of the consequent set is large. Imagine the

case when:

supp(Y ) & conf(X ⇒ Y )
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Then the appearances of Y in the transactions can actually be independent or in worst case,

negatively correlated with the appearances of X , even when the confidence of the rule X ⇒ Y is

high.

Therefore, we have used a third measure – based on Pearson’s chi-square (χ2) test of indepen-

dence – to select rules where the appearances of the antecedent set are truly positively correlated

with the appearances of the consequent set. For mining association rules, C. Borgelt’s implemen-

tation of the apriori frequent item set mining algorithm has been used [5].

The consequent part of an association rule can be used as a recommendation to a node if the

node’s file list contains the antecedent.

It is important to note that this method uses only information about item similarities by

exploiting their co-occurrences, and does not rely directly on user-based similarities.

6 Simulation Results

6.1 Measurement Details

6.1.1 Environment and Methodology

For every measurement, we have used our preprocessed file-sharing database (Section 3.2). The k

nearest neighbours of each peer – according to the Sorgenfrei set similarity measure – have been

selected, where k represents the maximum number of semantic proximity links a peer can have. A

local content recommendation to the peers was simulated by searching significant association rules

(Section 5), using only the file sharing data of the k most similar nodes. An important advantage

of the simulation-based approach was that comparable global recommendations could also be made

by using the same recommendation approach that uses not only the most similar nodes but the

whole database.

6.1.2 Evaluation by Validation

In centralized systems the evaluation of recommendation systems can be based on collecting and

evaluating user feedbacks or behaviour over time. In pure P2P systems – especially in unstructured

architectures – building and managing user profiles to precisely monitor user behaviour or to collect

regular feedbacks is technically nearly impossible.

Giancarlo Ruffo and Rossano Schifanella [19] have proposed to use cross-validation to evaluate

recommendation systems in P2P environments. They presented a simple case study using K-fold

cross-validation: The original data set is randomly partitioned into K equal samples. In a single

validation round K−1 samples are used to generate recommendations, and the remaining 1 sample

is used to validate the performance of the system. This process is then repeated K times, by using

each of the K samples as validation data exactly once. The results from the K cross-validation

steps are averaged to get the final result.

Based on this idea, we have used a simple random sampling approach. The input database has

been divided into two random parts – to a 80% large training and a 20% large validation sample.

We have only used the 80% part to create recommendations, and then evaluated them using the

20% part as reference data.
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6.1.3 Error Function

Performance has been evaluated by calculating the Sorgenfrei similarity coefficient, that has been

used to select similar nodes previously, between the recommendation and the validation set.

For example, suppose that 10 different recommendations are found, from which 3 are also

presented in the validation set of size 20 of the given node, then 32/10/20 = 0.0045 will be assigned

to the given recommendation as a measure of quality.

6.1.4 Measurements

To examine the effect of certain system parameters on the performance of recommendation, the

following measurements have been performed:

• The correlation between the number k and the performance of recommendation based on the

k most similar nodes, as well as recommendations based on the whole database (Section 6.2).

• The connection between the aggregated similarity measures and the success of recommenda-

tion (Section 6.3).

• The distribution of the aggregated similarity measures between peers and their k nearest

neighbours (Section 6.4).

• A simple simulated best-first approach to find similar nodes in a distributed environment

(Section 6.5).

Recommendations have been generated for more than 800 randomly selected nodes, where the

number of nearest neighbours has been varied between 50 and 250. To describe the relationship be-

tween certain variables and the recommendation success, the Pearson product-moment correlation

coefficient was used, which describes linear relationship between two random variables.

6.2 Number of Neighbours and the Quality of Recommendation

Our first main result is that recommendation success is not correlated with the number of neigh-

bours (Table 3). It does not mean that increasing the number of neighbours does not increase

the recommendation quality: in this case, the examined file suggestions have been run on different

nodes, and therefore are independent. Thus this result indicates that the performance of indepen-

dent recommendations cannot be estimated based exclusively on information about the number of

similar nodes used to generate the recommendations.

Table 3: Correlation between the number of neighbours and the recommendation success

Correlation: -0.027262

95% confidence interval: -0.0932 – 0.0389

p value: 0.419

Also, this means that to certain nodes it is possible to generate much better file suggestions

than to others, and increasing the number of neighbours cannot change this situation appreciably.
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A different question is that if the nearest neighbour number of a given node is increased, will it

influence recommendation quality positively, or negatively.

To answer this question, recommendations based on the full data set and recommendations

based on only the 200 nearest neighbours have been compared for 200 randomly selected nodes.

Our expectation was that the global recommendation would outperform the local version, however

– as shown in Figure 3 – the recommendations based on only the nearest neighbours are better in

most cases.
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Figure 3: Comparing global and local recommendation performance

The explanation is simple: By using an association rule based recommendation algorithm in

the global case – which considers information from all transactions with equal weight – we have

lost user based similarity information, which seems to be crucial to the success of file suggestions.

The conclusion is that pre-filtering of input data based on user similarities – which happens

naturally in certain P2P systems utilizing content similarities (Section 2) – can actually increase

the performance of item based recommendation algorithms.

6.3 The Aggregated Similarity Measures and the Quality of Recommen-

dation

The effect of neighbour similarity on the recommendation performance is significantly positive. As

shown on Table 4, the correlation between the aggregated similarity coefficients and recommenda-

tion success is high. Comparing the results in the three columns, the first obtained by using the

simple aggregated measure with assumption of independence (2), the second by using our second

estimation formula (3), and the third obtained by using real similarity values (1), the conclusion is

that our simple estimated measures are nearly as good indicators of success as the more complicated

real values.

To further investigate the problem, another measurement was conducted by selecting groups

of peers having aggregated distance measures in the 0.1 · n± 0.01 domain – where n is an integer

between 0 and 9 – and by averaging the achieved quality of recommendation for each group. The

results are depicted on Figure 4. This measurement does not express a mathematically solid
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Table 4: Correlation between the similarity of neighbours and the recommendation success

aggr., I. type aggr., II. type real

Correlation: 0.5105 0.6143 0.6242

95% confidence interval: 0.46 – 0.558 0.571 – 0.654 0.582 – 0.663

p value: < 2.2e-16 < 2.2e-16 < 2.2e-16
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relationship between the node similarities and the recommendation performance due to the fact

that the input was made to be unbalanced artificially in an arbitrary way. We only provide it

to present a simple graphical representation of the positive connection between the aggregated

similarity values and the recommendation quality.

6.4 Distribution of Aggregated Similarities

The empirical complementary cumulative distribution function of aggregated similarities between

nodes and their k nearest neighbours are depicted in Figure 5. The complementary CDF of the

generated and evaluated recommendations is also depicted. The distributions are uneven, actually,

they follow a power-law type distribution, which is a rather common feature of ranked data sets [7].

For example to the k = 100 case a Pareto distribution of second kind1 can be fitted well with

parameters: α = 0.73751 and β = 0.0156

Aggregated similarities are good forecasters of recommendation quality, as we have shown in

Section 6.3. From the distribution of these similarity values, and the actually measured recommen-

dations we can draw the conclusion, that high quality recommendations can only be made to a

smaller subset of nodes in the system. However, only a small 4.32% part of the nodes did not get

any usable suggestion in our measurements.

1It is simply a standard Pareto distribution but shifted along the x-axis so that it starts at x = 0. Its cumulative

distribution function is: F (x) = 1−

(

β

x+β

)α
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6.5 Architectural Simulation

A simple simulation has been conducted – using the file lists of our database of 34756 nodes (see

Table 2) – to show the feasibility of the assumption that a node can find most of its nearest

neighbours even in a simple unstructured P2P architecture. The main properties of our set-up

were the following:

• Nodes kept track of only the 100 most similar peers that they have met so far during the

simulation.

• Nodes connected in random order by getting the address of a randomly selected peer being

already in the system.

• During the simulation, each node – in random order – has initiated a neighbour list exchange

with the most similar node from among those that had not participated in an exchange with

this node before. During this exchange, the two nodes have sent their neighbour lists to each

other and then each of them has merged the received list into its neighbour list keeping only

the most similar one hundred nodes. This step was repeated 75 times. This procedure could

be repeated in real systems from time to time in a completely distributed manner in order

to keep the system up to date, however, in this case – for simplicity reasons – we considered

and examined only this static scenario.

• To show the feasibility of this best-first approach, another simulation has been executed in

which, peers have also kept track of the 100 most similar nodes, but the initiated neighbour

list exchanges have always been conducted between two randomly chosen nodes.

In Figure 6, the main results from the simulation are shown. More than 40% of the nodes

have found their absolute nearest neighbour even after only 10 initiated neighbour list exchanges

per peer. The best-first approach has given surpassingly better results compared to the random

procedure. This proves that the neighbours of similar nodes tend to be similar too, and that the
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good results of the best-first approach are not only the consequence of the sheer number of the

executed neighbour list exchanges.

We believe that these results could be improved even more by using more refined algorithms.

For example, neighbour lists are changing and improving so rapidly that a relaxed approach about

the exclusion of nodes which have formerly participated in list exchange could result in much better

performance.

6.6 Summary

We showed that content recommendation is possible with a local procedure by using only nearest

neighbours in distributed systems. The results indicate that the number of neighbours does not

correlate with the quality of recommendation. Actually, increasing excessively the number of neigh-

bours results in a decreased performance. Results presented in Section 6.3 show that the overall

similarity of neighbours could be the main factor influencing the achievable recommendation quality.

The statistical measurement of the file sharing data, showed that similarities – and therefore the

achievable recommendation success – follows a heavy-tailed distribution. Usable recommendations

can be given to a large percentage of the nodes – actually, seldom was the measured performance

zero – and to a smaller group of nodes excellent recommendations could be offered. Finally, in

Section 6.5 we showed that every node can find its nearest neighbours efficiently in unstructured

networks, even by using a very simple best-first searching algorithm.

7 Conclusions

In this paper we have investigated the feasibility of content recommendation over unstructured

P2P systems. Our measurements conducted on a large file-sharing database clearly showed that

content recommendation is possible in distributed P2P architectures, without strict requirements

concerning the structure of the overlay network.

Additionally, as a contribution to the field of presence-absence data analysis, we have intro-

duced a novel aggregated measure of similarity between a given set and a collection of sets, and
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provided two simple formulae to estimate this overall similarity based on pair-wise similarities only.

According to our results, these measures can be good forecasters of recommendation performance.

We believe that a further investigation of the properties and variations of similarity measures

could lead to a better understanding of the influencing factors of the recommendation quality.
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