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Algebraic difference of random Cantor
set

1 Introduction and main results
In 1987, Palis and Takens [9] studying the dynamical behavior of diffeomorfism presented
a conjecture about the size of the algebraic difference of two Cantor sets. Informally, if
the size of the difference is large then it contains an interval. More precisely, if C1 and C2

are two Cantor sets then the algebraic difference

C2 − C1 = {y − x : x ∈ C1, y ∈ C2}

contains an interval if
dimH C1 + dimH C2 > 1, (1)

where dimH denotes the Hausdorff dimension.
In 2001, De Moreira and Yoccoz ([7]) proved the conjecture for generic dynamically

generated non-linear Cantor sets. The conjecture has not been proven for generic linear
Cantor sets.

In 1990, Per Larsson put the problem into a probabilistic context in [5], (see also [6]).
He considered a very special family of two parameters random Cantor set and proved the
conjecture for certain parameter set. Although the main idea of Larsson’s argument is
brilliant, unfortunately the proof contains significant gaps and incorrect reasonings. In
2011, the present authors gave precise proof for the Larsson’s family in [2]. We briefly
recall the Larsson’s family from [2]: let

a >
1

4
and 3a+ 2b < 1. (2)

The first condition is a growth condition, and since

dimHCa,b = − log 2

log a
,

this condition is equivalent to dimHCa,b > 1/2, which is equivalent to (1).
Larsson’s construction is as follows (see also Figure 1 ): first remove the interval[

1
2
− a

2
, 1

2
+ a

2

]
from middle of [0, 1], then the b parts from both the beginning and the end
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of the unit interval. Then put intervals of length a according to a uniform distribution in
the remaining two gaps

[
b, 1

2
− a

2

]
and

[
1
2

+ a
2
, 1− b

]
. These two randomly chosen intervals

of length a are called the level one intervals of the random Cantor set Ca,b. We write C1
a,b

for their union. In both of the two level one intervals we repeat the same construction
independently of each other and of the previous step. In this way we obtain four disjoint
intervals of length a2. We emphasize that, because of independence, the relative positions
of these second level intervals in the first level ones are in general completely different.
Similarly, we construct the 2n level n intervals of length an. We call their union Cn

a,b.
Then Larsson’s random Cantor set is defined by

Ca,b :=
∞⋂

n=1

Cn
a,b.

In this paper, we prove that the conjecture by Pallis and Takens is true for a very
broad class of random linear Cantor sets. Our result is valid for the Larsson family as
well.

Below, we describe the the Cantor sets we investigate in this paper. We throw m ≥ 2
disjoint intervals I1, . . . , Im onto the I := [0, 1] such that the length r1, . . . , rm of these in-
tervals are fixed and the left endpointsD1 ≤ · · · ≤ Dm form a random vector (D1, . . . , Dm)
having absolute continuous marginals. This gives the first approximation of our random
Cantor set. To get the second approximation we repeat the same process independently
in every Ik instead of I. This results in the level two intervals {Iij}mi,j=1. Then we repeat
the same process independently in all intervals Iij and independently of the previous step.
Note that because of the independence the relative positions of the second level intervals
are independent of the relative positions of the first level intervals. The intersection of
the union of all level-n intervals is a random Cantor set. As we see in Section 1.1 this
random Cantor set is the attractor of a random IFS, let us call it F , which consists of
linear contractions with deterministic contraction ratios and random translations. The
object of our study in this paper is a slightly more general random Cantor set CF which
is the attractor of a random IFS in which additionally reflections are allowed. For the
precise definition see Definition 1.

Our main result is a generalization of [2]:

Main Theorem. Let F be a random IFS with similarity dimension larger than 1
2
in-

formally described above and precisely defined in Definition 1. Let C1 and C2 be two
4 MICHEL DEKKING, KÁROLY SIMON AND BALÁZS SZÉKELY

10 b 1− b1
2

+ a
2

1
2
− a

2

Figure 2. The construction of the Cantor set Ca,b. The figure shows C1
a,b, . . . , C

4
a,b.

Theorem 1. Let C1, C2 be independent random Cantor sets having the
same distribution as Ca,b defined above. Then the algebraic difference C2−C1

almost surely contains an interval.

Our paper is organized as follows: In the next section we give an elemen-
tary proof of the fact that the probability that C2 −C1 contains an interval
is either 0 or 1. For the main part of the proof our starting point is the
observation that C2 − C1 can be viewed as a 45◦ projection of the product
set C1 × C2. This leads in Section 3.1 to the introduction of the level n
squares formed as the product of level n intervals of the Cantor sets C1, C2.
We remark that Larsson does not use these squares at all. Then based on
the family of these squares we will build up the intrinsic branching process,
and we state our Main Lemma which will replace (2). In Section 4 we prove
Theorem 1 assuming the Main Lemma. In Sections 5-10 we give a proof of
the Main Lemma.

2. A 0-1–law. In the following we will use that the property of contain-
ing an interval is invariant for translations and scalings, and we will write
“C2 −C1 contains an interval” also equivalently as “C2 −C1 has non-empty
interior”. It follows from translation invariance and the statistical self simi-
larity of the Cantor set construction that

P (Int(C2 − C1) 6= ∅) = P
(
Int(C1,1

2 − C1,1
1 ) 6= ∅

)
,

where C1,1
i = Ci ∩ [0, 1

2 ], and C1,2
i = Ci ∩ [12 , 1]. This observation is the basis

for the following simple proof of the 0-1-law of the ‘interval property’.

Proposition 1. P (C2 − C1 ⊃ I) = 0 or 1.

Proof. Note that

p := P (C2 − C1 ⊃ I) = 1− P (Int(C2 − C1) = ∅)
≥ 1− P

(
Int(C1,1

2 − C1,1
1 ) = ∅, Int(C1,2

2 − C1,2
1 ) = ∅

)

= 1− P
(
Int(C1,1

2 − C1,1
1 ) = ∅

)
P
(
Int(C1,2

2 − C1,2
1 ) = ∅

)

= 1− (1− p)2.

Figure 1: The construction of the Cantor set Ca,b. The figure shows C1
a,b, . . . , C

4
a,b. (This

figure is taken from [2].)
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T11 = D1 + r1D
(1)
1

T12 = D1 + r1D
(1)
2

T13 = D1 + r1D
(1)
3

T21 = D2 + r2D
(2)
1

T22 = D2 + r2D
(2)
2

T23 = D3 + r2D
(2)
3

T31 = D3 + r3D
(3)
1

T32 = D3 + r3D
(3)
2

T33 = D3 + r3D
(3)
3

Figure 2: Level 1 and 2 cylinder intervals of our Cantor set when m = 3. The randomly
chosen left endpoints Ti and Tij, i, j = 1, 2, 3 are depicted.

independent copies of the attractor CF . Then

C2 − C1 contains an interval a.s.

The essential part of the proof of this theorem is completely different of that of the
main result in [2]. The proof in [2] was tailored for the Larsson’s family, it does not
have the potential to any generalization. The proof presented in this paper is based on a
method introduced in [8] in the sense that [8] determines the successive steps that have to
be proved so that in the end we get an interval in the algebraic difference almost surely.
However, the proofs of the individual steps in this paper are again completely different of
the ones in [8].

The cornerstone of the proofs, Main Lemma both in [2] and in this paper are similar to
each other in its role. In both papers Main Lemma serves as a starting step of the essential
part of the proof. Informally, Main Lemmas state that the associated branching processes
are uniformly supercritical, where uniformity is meant in the type of the ancestor. The
proof of this property is quite technical in both paper and this is the point in which the
proofs follow the same trace. In spite of this similarity, since the result in this paper is
more general the proof here is significantly different of the one in [2].

The reminder of the paper consists of three parts. First, in Section 2, we prove that
our Main Theorem provided we know the statement of the Main Theorem for intervals
having the same length r1 = · · · = rm = a. In Section 3, we introduce the key notions
and the associated branching process that are needed to the rest of the paper, and we
present the idea of the proofs of the rest of the paper in very informal way. The second
part, Section 4 contains the essential part of the proof, that is, once we know the uniform
super criticality of the associated branching process (this is the Main Lemma), we prove
that there exists an interval in the difference almost surely. The third part, Section 5 and
6, contains the proof of the Main Lemma.

1.1 The formal description of our Random Cantor set

First we define the Random Iterated Functions System (RIFS) F whose attractor CF is
the random Cantor set described above.
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Definition 1 (RIFS). Let

F = {fi(x) = rix+Di}mi=1 . (3)

The linear parts r1, . . . , rm ∈ (−1, 1) \ {0} are deterministic. About the random transla-
tions (D1, . . . , Dm), of the functions in F in (3), we assume the following:

(A1): (D1, . . . , Dm) is an m dimensional random variable such that for any i = 1, . . . ,m,
the random variable Di is absolute continuous w.r.t. the Lebesgue measure.

(A2): For any i, j ∈ {1, . . . ,m} and i 6= j we have

fi(0, 1) ∩ fj(0, 1) = ∅.

To define the random translations of the iterates of this system we introduce
{(
D

(i)
1 , . . . , D(i)

m

)}
i∈Σ∗∪{∅}

as a set of i.i.d. random variables having the same distribution as that of (D1, . . . , Dm).
Now, the iterates fi for i ∈ (1, . . . ,m)n are defined as follows:

fi(x) = fi1 ◦ · · · ◦ fin(x)

= ri1

(
ri2

(
. . .
(
rin−1(rinx+D

(i1...in−1)
in

) +D
(i1...in−2)
in−1

)
. . .
)

+D
(i1)
i2

)
+D

(∅)
i1

(4)

= rix+ Ti

where ri = ri1 · · · rin and

Ti = D
(∅)
i1

+ ri1D
(i1)
i2

+ ri1ri2D
(i1i2)
i3

+ . . .+ ri1 · · · ri1...in−1D
(i1...in−1)
in

. (5)

We write CF for the attractor of the IFS above.

The dimension theory of the RIFS described above is well understood.
The following fact is a direct consequence of the geometric construction presented in

[1].

Fact 1 (Dimension of a RIFS). Let F be a RIFS and let s(F) denote the solution the
equation

m∑

i=1

|ri|s = 1. (6)

Then we have

dimH CF = dimBCF = dimBCF = s(F) for all realisations.

With these definitions we can state our Main Theorem precisely:

Theorem 1 (Main Theorem). Let C1, C2 be two independent copies of the attractor CF .
If s = s(F) > 1

2
(that is dimH CF >

1
2
), then C2 − C1 contains an interval a.s. . On the

other hand, if s < 1
2
then dimH(C2 − C1) < 1, so C2 − C1 cannot contain any intervals.
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2 The proof of the main result
Homogeneous random IFS are the ones where all the contraction ratios are the same (see
precise definition below). In this section we verify that it is enough to prove our main
theorem for the homogeneous RIFS.

Definition 2 (Generated RIFS). Let F = {fi}mi=1 be an RIFS. We say that G is a
generated RIFS of F if any element of G is a composition of some elements of F . More
precisely, G is of the form of

G = {fi}i∈I ,
where I ⊂ {1, . . . ,m}n, for some n and I. (We do not require here that I is a cut set.)

Now we prove that a generated RIFS is always a RIFS that is it satisfies (A1) and
(A2).

Lemma 1. Let F be an RIFS and let G be an arbitrary generated RIFS of F . Then G
itself is an RIFS.

Proof. The only fact to check is that for all i ∈ I the random translation Ti is absolute
continuous. However, using (5), this follows from the fact that the random variables
D

(∅)
i1
, D

(i1)
i2
, D

(i1i2)
i3

, . . . , D
(i1...in−1)
in

are absolute continuous random variables and they are
independent of each other.

Definition 3 (Homogeneous RIFS). We say that H is a homogeneous RIFS if H satisfies
the conditions of Definition 1 and all the contraction ratios are equal to the same positive
number a. We write CH for the attractor of the RIFS above.

Since in the rest of the paper we work mostly with homogeneous RIFS we summarize
here their most important properties:

Remark 1. Let H be a homogeneous RIFS. Then H is of the form

H = {ax+ Ui}Ki=1,

where K ≥ 2, a > 0 and the random translations (U1, . . . , UK) satisfy:

(H1) For any i = 1, . . . , K, Ui is absolute continuous w.r.t. the Lebesgue measure.

(H2) For any i = 1, . . . , K − 1 we have

0 ≤ a+ Ui ≤ Ui+1 ≤ 1− a.

Note: since s(H) = − logK
log a

for a homogeneous RIFS H the condition dimH CH > 1
2

translates to
1

K2
< a <

1

K
.

Our main result for homogeneous RIFS states that:
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Theorem 2. Let H be a homogeneous RIFS satisfying a > 1
K2 (that is s(H) > 1

2
and

dimH(CH) > 1
2
). Let C1 and C2 two independent copies of CH. Then C2 − C1 contains

an interval a.s.. On the other hand if a < 1
K2 then C2 −C1 cannot contain any intervals.

Our aim is to prove that Theorem 1 follows from Theorem 2. In order to do that we
need a lemma which is a randomized version of [10, Proposition 6]:

Lemma 2. Let F be a RIFS. Then for any δ > 0 there exists a generated homogeneous
RIFS H such that,

CF ⊃ CH and dimHCH > dimH CF − δ (7)

Proof. Using the same argument as in the first paragraph of the proof of [10, Proposition
6] one can easily see that we can find a generated RIFS

F ′ = {ϕi(x) = qix+ Ti}Mi=1 (8)

satisfying:

(b1) dimH(CF ′) > dimH(CF)− δ/2

(b2) qi > 0 for all i = 1, . . . ,M .

Although the proof of [10, Proposition 6] is presented for IFS with deterministic transla-
tions it can be easily extended to random IFSs in Definition 1 because it operates only
with the contraction ratios independently of the size of the translations.

We define H as a proper subsystem of F ′ following the steps of the proof of [10,
Proposition 6 ]. According to Lemma 1 H is a RIFS as well. So we have to prove that
the dimension of H is close enough to the dimension of F ′ in the sense of (7).

We only repeat the key steps of the proof of [10, Proposition 6 ]. Namely, for any k
let us consider the simplex

∆k =

{
x ∈ RM : xi ≥ 0,

M∑

i=1

xi = k

}
.

Clearly, for pi := q
s(F ′)
i we have

M∑
i=1

kpiei ∈ ∆k. We define v(k) ∈ ∆k as an all integer

coordinate element of ∆k of minimal distance from
M∑
i=1

kpiei. Let

Ik :=

{
i = (i1, . . . ik) :

k∑

`=1

ei` = v(k)

}
.

Now we define
Hk := {ϕi}i∈Ik

.
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By the definition of I, for every ϕi ∈ Hk the contraction ratio is the same constant ρ(k),
where qi =

∏k
`=1 qi` =

∏M
i=1 q

vi(k)
i =: ρ(k).

Fact 1 implies that for all realizations

dimHF ′ = s(F ′) and dimHH = s(H) = − log #Hk

log ρ(k)
.

Using this fact, it follows from the proof of [10, Proposition 6 ] that

lim
k→∞

dimH(H) = dimH(F ′).

Let us fix a k such that
dimH(H) > dimH(F ′)− δ

2
.

Let H := Hk and a := ρ(k). Hence using (b1), we obtain that

dimH(H) > dimH(F ′)− δ

2
> dimH(F)− δ.

This completes the proof of the lemma.

Now we are ready to prove our main Theorem assuming that Theorem 2 holds.

Proof of Theorem 1 assuming Theorem 2. Given a RIFS F . Put δ := s(F) − 1/2. We
consider the homogeneous RIFSH constructed in Lemma 2. By the choice δ = s(F)−1/2,
s(H) > 1

2
holds, so for H Theorem 2 can be applied.

Let C(F)
1 and C

(F)
2 be two independent copies of CF . Further, let C(H)

1 ⊂ C
(F)
1 and

C
(H)
2 ⊂ C

(F)
2 be independent attractors of H. Since C(H)

2 − C
(H)
1 contains an interval

almost surely (by Theorem 2) the larger set C(F)
2 − C(F)

1 also contains an interval almost
surely.

3 The idea of the proof of Theorem 2 and the Main
Lemma

The proof of Theorem 2 consists of two parts. The first part of the proof is presented in
Section 4. The second part, the proof of Main Lemma, which is more technical, will be
presented in Sections 5 and 6. Below, we first introduce a renormalization operator Φ in
order to present the idea of the proof.

3.1 The renormalization operator Φ

The following simple observation allows us to present the problem in geometrically more
understandable way. Let us denote by Proj45◦ the 45◦ projection of R2 to the vertical
axes, that is, for (x, y) ∈ R2

Proj45◦(x, y) = y − x.
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Now, observe that

x ∈ C2 − C1 ⇔ x ∈ Proj45◦ (C1 × C2) ⇔ e(x) ∩ C1 × C2 6= ∅,

where e(x) denotes the 45◦ line through (0, x). Remark that since C1, C2 ⊂ [0, 1] we have

Proj45◦ (C1 × C2) ⊂ [−1, 1].

By the construction of the Cantor sets C1, C2, for x ∈ [−1, 1] we have

e(x) ∩ (C1 × C2) 6= ∅ ⇔ ∀n : e(x) ∩ (Cn
1 × Cn

2 ) 6= ∅ ⇔
for arbitrary subsequence (nk) : e(x) ∩ (Cnk

1 × Cnk
2 ) 6= ∅,

where Cn
1 and Cn

2 denote the level-n cylinder intervals of Cantor sets C1 and C2 respec-
tively. Hence Cn

1 × Cn
2 denotes the collection of level-n cylinder squares.

The “type” of the intersection of a square and the line e(x) has to be also investigated
since it is not enough registering the fact of the intersection. Later, the “type” defined
below enables us to use branching process techniques. So, let Q be a level-n square.
More precisely, if (u, v) denotes the left bottom corner of a level-n square Q, that is,
Q = [u, u+ an]× [v, v+ an] then we define the intersection type of Q with the line e(x)
as follows:

Φ(Q, x) :=

{ u−v+x
an if e(x) intersects Q

Θ otherwise,
(9)

where the symbol Θ represents the emptiness of the intersection and we call Φ the renor-
malization operator. See Figure 3. Observe that if the intersection is non-empty then the

1

1

0

Q

a−n

a−n

x

Φ = Φ(Q, x)

e(x)

e(Φ)

Figure 3: Φ(Q, x) is one of the n-th generation offspring of x determined by a level-n cylinder square
Q.
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signed length of the intersection Φ is rescaled into the interval [−1, 1]. Further, observe
that Φ(Q, x) > 0 if and only if the center of Q is located below the line e(x) and e(x)
meets Q.

3.2 Idea of the proof of Theorem 2

Now, we are ready to present the idea of the proof of Theorem 2 in a very informal way.
IFor an appropriately chosen collection of closed subintervals H2 ⊂ [−1, 1] and small
fixed length h(H2) > 0 and positive integer r(H2) we have the following:
Let ξ > 0 be an arbitrarily small number. Then, there exists a positive integer n(ξ)
such that with probability at least 1 − ξ we can find an interval J ⊂ [−1, 1] of length
h(H2) such that for any x ∈ J for every M ∈ N there are exponentially many level
nM = n(ξ) +M · r(H2) squares Q(M)

1 , Q
(M)
2 . . . such that Φ(Q

(M)
i , x) ∈ H2.

One of the main ingredients of Theorem 2 is verified in the Main Lemma, in Sections
5 and 6 performing a rather technical proof. Proving the Main Lemma is the initial
step in the machinery introduced in [8]. At the present state of the formalism it is
easier to formulate a consequence of the Main Lemma, Corollary 1 on page 15. It states
the following. One can find pairs of appropriately large collection of closed subintervals
H1, H2 ⊂ [−1, 1] such that H1 ⊂ intH2 and for any x ∈ H2 the expected number of level-1
squares Q1, Q2, . . . such that Φ(Qi, x) ∈ H1 is bigger than 1 uniformly in x.

In the rest of this section we will put the problem in branching process context and
formulate the Main Lemma.

3.3 The probability space of the squares

Let T be the K array tree which is the set of finite words over the alphabet {1, . . . , K}.
Following the definition of CF in Definition 1, let the probability space of our Cantor set
be

Ω1 =
⊗

i∈T
suppU i∗

`(i),

where `(i) denotes the last coordinate of i and i∗ stands for the vector that is built up
from the all but last coordinate of i, that is, if i = (i1 . . . in) then i∗ = (i1 . . . in−1). The
corresponding σ-algebra is B1 is the generated Borel σ-algebra. The probability measure
of our Cantor set is

P1 = δ0 ×
∏

i∈T
d
(
U i∗

`(i)

)
,

where d() denotes the probability distribution of the random variable in the parenthesis
and δ0 is the Dirac mass at 0 associated with the mass at the root of T . So the probability
space for C1 × C2 is as follows:

Ω := Ω1 × Ω1, B := B1 × B1, P := P1 × P1. (10)

An element of Ω is a pair of labeled K array trees. The (K2)n level-n pairs of in-
dices (i1i2 . . . in, j1j2 . . . jn) are naturally associated with level-n squares Qi1i2...in,j1j2...jn =
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I
(1)
i1i2...in

×I(2)
j1j2...jn

of size an×an, see Figure 4. The indexing of the squares is inherited from
the indexing of the cylinder sets of the Cantor sets C1 and C2 hence it follows “antimatrix”
numbering.

1

1

Q12

Q21 Q22

QKK

Q2K

QK2

Q1K

QK1

Q11

Figure 4: The level-1 squares Qij, i, j = 1, . . . , K.

3.4 The branching process

In the introduction of our multi-type branching process we follow [2, Section 3.3] since
the branching process constructed in this paper is similar to the one presented in [2].

On the probability space Ω we define a multi type branching process Z = (Zn)∞n=0.
The type space T is a compact subset of [−1, 1], for the moment think of T = [−1, 1].

The types of the descendants of an individual x ∈ [−1, 1] are the intersection types
of the level-1 squares with line e(x) as defined in (9). More precisely, let Z0 = x and let
Zij := Φ(Qi,j, x) then

Z1 = {Zi,j : i, j = 1 . . . , K}
Note that although we speak of Θ as a type, it is not an element of T .

Therefore, the level-n children of ancestor x ∈ T are the signed length of the rescaled
intersections of the level-n squares with the line e(x). More precisely, let Z0 = {x} then
for any n ≥ 1

Zn = {Φ(x,Qt) : t ∈ Tn × Tn, e(x) ∩Qt 6= ∅},
where Tn := {1, . . . , K}n.

We remark that the process (Zn)∞n=0 is a Markov chain since an individual in Zn give
birth descendants independently of the individuals of the same generation if Zn−1 is given.

A collection of squares all with type Θ is an absorbing state: it only generates squares
with type Θ. This is obvious from the definition of Φ(Q, x), but we will extend this
property to the case of smaller type spaces T , where by definition a square has type Θ if
its type is not in T (this will be further explained in Section 5).
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For a Borel set A ⊂ T the natural number Zn(A) represents the number of objects in
generation n whose type falls into the set A.

A major role in our analysis is played by the expectations Ex[Zn(A)], for A ⊂ T ,
n ≥ 1. Since

Zn(A) =
∑

t∈Tn×Tn, e(x)∩Qt 6=∅
1{Φ(x,Qt) ∈ A}

for n = 1 we have

Ex[Z1(A)] =

∫

Ω

Z1(A) dPx =

∫

Ω

K∑

i,j=1

1{Φ(x,Qij) ∈ A} dPx

=
K∑

i,j=1

P(Φ(Qij, x) ∈ A) =
K∑

i,j=1

∫

A

φij(x, y) dy, (11)

where φij(x, ·) denotes the density function of the random variable Φ(Qij, x) (apart from
an atom in Θ) for i, j = 1, . . . , K. In Section 5 these densities will be determined explicitly.
It follows that for n = 1

Mn(x,A) := Ex[Zn(A)]

has a density m1(x, y), called the kernel of the branching process, given by

m(x, y) := m1(x, y) =
K∑

i,j=1

φij(x, y). (12)

We remark that if M1 has a density then Mn also has a density. Let us write mn(x, ·) for
the density of Mn(x, ·). The branching structure of Z yields (see [3, p.67])

mn+1(x, y) =

∫

T

mn(x, z)m1(z, y) dz. (13)

One of the main problem in the argument is finding the proper type space T ⊂ [−1, 1].
In Section ... we will prove that it can be constructed a type space T such that Theorem
3 holds and condition (C2) below also satisfies. Further, m(·, ·) is continuous on the
compact set T × T .

3.5 Supercritical branching process with uniformly positive ker-
nel

We will prove in Sections 5 and 6 that there exists an integer n0 such that mn0 is a
uniformly bounded function, that is, there exist 0 < amin < amax such that for all x, y ∈ T
we have

0 < amin ≤ mn0(x, y) ≤ amax <∞. (C1)

12



In the next step we consider the following two operators:

F : g(x) 7→
∫

T

m1(x, y) · g(y) dy (14)

G : h(y) 7→
∫

T

h(x) ·m1(x, y) dx.

We cite the following theorem from [3, Theorem 10.1]:

Theorem 3 (Harris). It follows from (C1) that the operators in (14) have a common
dominant eigenvalue ρ. Let µ(x) and ν(y) be the corresponding eigenfunctions of the
first and second operator in (14) respectively. Then the functions µ(x) and ν(y) are
bounded and uniformly positive. Moreover, apart from a scaling, µ and ν are the only
non-negative eigenfunctions of these operators. Further, if we normalize µ and ν so that∫
µ(x)ν(x) dx = 1, which will be henceforth assumed, then for all x, y ∈ T as n→∞

∣∣∣mn(x, y)

ρn
− µ(x)ν(y)

∣∣∣ ≤ C1 µ(x)ν(y)∆n,

where the bound ∆ < 1 can be taken independently of x and y, and the constant C1 is
independent of x, y and n.

In Sections 5 and 6 we will prove our Main Lemma that we state now.

Main Lemma. Let us be given a homogeneous RIFS H. Then we can find a type space T
such that condition (C1) is satisfied, and hence Theorem 3 holds. Moreover, the Perron-
Frobenius eigenvalue ρ is greater than one:

ρ > 1. (C2)

Putting δ = ρ− 1 > 0 we can find a continuous function f : T → (0,∞) such that

Ff(x) = (1 + δ)f(x), (15)

where the operator F was defined in (14).

Note that f is uniformly positive and bounded function because T is compact and f
continuous and positive on T .

We remark that Main Lemma states that with the type-space constructed in Sections
5 and 6 and the types of the descendants given in Section 3.4, the associated branching
process is supercritical.

We also note that (15) is equivalent to the following:

∀x ∈ T : Exf (Z1(T )) = (1 + δ)f(x).

13



4 The proof of Theorem 2 assuming Main Lemma
Let T (0) be the set (union of finite open subintervals of (−1, 1)) that we construct in
Sections 5 and 6. In Theorem 4, it turns out that there exists an interval (0, ε0) such that
for any ε ∈ (0, ε0) the compact set T = T (ε) := T (0) \ B(∂T, ε) 6= ∅ is a type-space for
which Main Lemma is true, where for any set H and radius r > 0 we used the notation
B(H, r) :=

⋃{(x− r, x+ r) : x ∈ H}.
Fix an ε ∈ (0, ε0) and let η0 ∈ (0, ε0 − ε).
Using Theorem 4 (Main Lemma) we prove the following.

Lemma 3. There exist η ∈ (0, η0] such that introducing the notations

g1(x) = f(x) · 1T (ε+η)(x), x ∈ T (ε)

we have
Fg1(x) >

(
1 +

δ

2

)
f(x) for any x ∈ T (ε).

Proof. What we need to show it is that we can find η ∈ (0, η0] such that

∀x ∈ T (ε)

∫

T (ε+η)

m(x, y)f(y) dy >

(
1 +

δ

2

)
f(x). (16)

For η ∈ [0, η0] and x ∈ T (ε) we define

G(x, η) :=

∫

T (ε+η)

m(x, y)f(y) dy.

Using (15) we have G(x, 0) = (1 + δ)f(x). Hence (16) is equivalent to the following:

∀x ∈ T (ε), G(x, η) > G(x, 0)− δ

2
f(x).

Hence for showing (16) it is enough to prove that there exists η ∈ (0, η0] small enough
such that

sup
x∈T (ε)

[G(x, 0)−G(x, η)] <
δ

2
min
x∈T (ε)

f(x). (17)

Since G(x, η) is continuous on the compact set T (ε)× [0, η0] we have that it is uniformly
continuous on T (ε) × [0, η0]. Therefore, one can find η ∈ (0, η0] small enough such that
(17) holds.

Let us define
H1 := T (ε+ η), H2 := T (ε).

For x ∈ H2 let An(x,H1) be the set of types of those level n descendants of x which
fall in H1. Let

An(x,H1) = #An(x,H1).

Concerning the associated multi-type branching process, an easy consequence of Lemma
3 is the following.

14



Corollary 1. For any n ≥ 1 we have

∀x ∈ H2 F n1H1(x) >

(
1 +

δ

4

)n
minH2 f(x)

maxH1 g1(x)
· 1H2(x) .

Consequently, there exist a positive integer r such that

∀x ∈ H2 F r1H1(x) > 6 · 1H2(x). (18)

That is
∀x ∈ H2,EAr(x,H1) > 6 · 1H2(x). (19)

The following statement, Lemma 5 is a slight generalization of the easy part of the Cramér
theorem.

Let Fx denote the probability distribution function of Ar(x,H1) for x ∈ H2.
Let C be a positive integer and let x1, . . . , xC ∈ H2 be an arbitrary sequence. Let

Z
(1)
x1 , . . . , Z

(C)
xC be a sequence of independent random variables such that the distribution

function of Z(i)
xi is Fxi

. We will prove the following.
Our next lemma is a corollary of the Hoeffding inequality[4]:

Lemma 4 (Hoeffding). Assume Y1, . . . , YC are independent random variables such that
for any i = 1, . . . , C we have ai ≤ Yi ≤ bi for some real numbers ai, bi. Let SC =

∑C
i=1 Yi

and let t be a positive real number then we have

P(SC − ESC > t) ≤ exp

{
− 2t2∑C

i=1(bi − ai)2

}
.

Lemma 5. There exists 0 < τ < 1 such that for C ≥ 1

P
(
Z(1)
x1

+ · · ·+ Z(C)
xC

< 4C
)
≤ τC .

Proof. Let mxi
:= EZ

(i)
xi and in general mx := EZx. We have the following chain of

equalities:

P
(
Z(1)
x1

+ · · ·+ Z(C)
xC

< 4C
)

= P

(
Z(1)
x1
−mx1 + · · ·+ Z(C)

xC
−mxC

< 4C −
C∑

i=1

mxi

)

= P

(
mx1 − Z(1)

x1
+ · · ·+mxC

− Z(C)
xC

>

C∑

i=1

(mxi
− 4)

)

Now, we want to apply Hoeffding inequality for

Yi = mxi
− Z(i)

xi
, SC =

C∑

i=1

Yi, and t =
C∑

i=1

(mxi
− 4).

First, note that by the definition of r in (19) we have mx > 6 for any x ∈ H2. Therefore,
t > 0. Further, ESC = 0.
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Since each line e(x) can intersect at most 2 ·Kr level-r squares we have

0 ≤ Zx ≤ 2 ·Kr and mxi
− 2 ·Kr ≤ Yi ≤ mxi

.

Thus, we have

P

(
mx1 − Z(1)

x1
+ · · ·+mxC

− Z(C)
xC

>
C∑

i=1

(mxi
− C)

)
≤

exp




−

2
(∑C

i=1(mxi
− 4)

)2

∑C
i=1(2 ·Kr)2




≤

exp




−

2
(∑C

i=1(6− 4)
)2

C · 4 ·K2r





= exp

{
− 8C2

4C ·K2r

}
=

(
exp

{
− 2

K2r

})C
,

where we used mx > 6. Since τ = exp
{
− 2
K2r

}
< 1, this proves the Lemma.

Let us denote by c1 the length of the smallest interval in T (0). Let n1 =

⌈
loga

c1

|H1|

⌉
.

Further, let `1 be the length of the smallest interval in H1.

Lemma 6. For any fixed n ≥ n1 and for any ω ∈ Ω there exists an interval J = J(ω) ⊂
T (0) of length |J | = `1a

n such that for any x ∈ J

An(x,H1)(ω) ≥ |H1|
2

(K2a)n =: N(n).

Proof. The support of the kernel will be chosen in such a way that for any x ∈ [−1, 1]\T (0)
and for any n ≥ 1 we have P(An(x, T (0)) > 0) = 0. See Fact 3.

By definition of An(x,H1)(ω) we have
∫

[−1,1]

An(x,H1)(ω) dx =

∫

T (0)

An(x,H1)(ω) dx

= K2n|H1|an = 2N(n),

here, we have integrated K2n characteristic functions of sets of length |H1|an.
In this way, also using the initial remark, there exists an x(ω) ∈ T (0) such that

An(x,H1)(ω) ≥ 2N(n).

This implies that there exists an interval J = J(ω) ⊂ T (0) of length |J | = `1 · an such
that for any x ∈ J

∀x ∈ J An(x,H1)(ω) ≥ N(n),

we remind the reader that `1 was defined before the statement of the Lemma.
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We partition each interval of T (0) into intervals of equal length. If I is an interval of
T (0) then we partition it into

⌈
3 |I|
`1an

⌉
subintervals. In this way we obtain a partition of

T (0) into the intervals J1, . . . , JL such that for any k, |Jk| ≤ |J |/3, where J was defined
in Lemma 6.

For ω ∈ Ω let k(ω) ∈ {1, . . . , L} be chosen such that

Jk(ω) ⊂ J(ω), Jk(ω)−1 * J(ω),

where J(ω) is the interval defined in Lemma 6. Let

Ωl = {ω : k(ω) = l}

Note that, by Lemma 6 we have

Ω =
L⋃

l=1

Ωl.

Let
ak(n) = (K2)n+krτ 2k−1·N(n).

For fixed ξ > 0 let n2 ≥ n1 be chosen such that for any n ≥ n2 and for any k ≥ 0

ak(n) <
1

2
and

∞∑

k=0

ak(n) < ξ/2.

Lemma 7. Fix an arbitrary n ≥ n2 and l ∈ {1, . . . , L}. Then

∀x ∈ Jl and ∀ω ∈ Ωl, An(x,H2)(ω) > N(n). (20)

Further,

P
(
An+Mr(x,H2) > 2M ·N(n),M = 0, 1, . . . , ∀x ∈ Jl | Ωl

)
>
∞∏

k=0

(1− ak(n)). (21)

Proof. Equation (20) follows from Lemma 5 and the previous definition.
Concerning (21). Let Xk be a ηa2n+kr dense set in Jl, where η has been set in Lemma

3. Xk can be chosen such that #Xk ≤ `1an

ηa2n+kr = `1
η
a−(n+kr) < (K2)n+kr if n ≥ n2.

Using Lemma 5 it can be proved that for any x ∈ Jl
P (An+r(x,H1) ≤ 2N(n) | Ωl) ≤ τN(n). (22)

Indeed, let
C := An(x,H2)(ω)/2

and we define Ãn(x,H2) as follows: first we order the elements of An(x,H2) in the natural
way and we choose every second elements to obtain

Ãn(x,H2) := {y1, . . . , yC(ω)} .
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Put
Yi := Ar(yi, H1), i = 1, . . . , C(ω).

In this way Y1, Y2, . . . , YC is a sequence of independent random variables. Lemma 5 yields:

P

(
C∑

i=1

Yi < 2N(n) | Ωl

)
≤ P

(
C∑

i=1

Yi < 4C | Ωl

)
≤ E(τC | Ωl) < τN(n)

since 2C ≥ N(n) on Ωl by Lemma 6. On the other hand, by the definition of C and Yi’s

C∑

i=1

Yi ≤ An+r(x,H1).

Hence equation (22) follows.

To prove equation (21) we will use induction. More precisely, we will prove that the
inequality

P
(
An+kr(x,H2) > 2k ·N(n),∀0 ≤ k ≤M, ∀x ∈ Jl | Ωl

)
>

M∏

k=0

(1− ak(n)). (23)

holds for any positive integer M .

For M = 1, by (22) we obtain:

P (∃x ∈ X1, An+r(x,H1) ≤ 2N(n)|Ωl) ≤ #X1 · τN(n).

Recall that X1 was defined as an ηa2n+r-dense subset of Jl. Using |X1| ≤ (K2)n+r we
have

P (An+r(x,H1) > 2N(n), x ∈ X1 | Ωl) ≥ 1− (K2)n+rτN(n). (24)

Next, our purpose is to extend the inequality (24) from all x ∈ X1 to all x ∈ Jl. Let us
fix k ≥ 1.

We will use the following fact.

Fact 2. For any k ≥ 1 and l = 1, . . . , L we have
{
An+kr(x,H1) > 2kN(n), x ∈ Xk

}
∩ Ωl ⊂

{
An+kr(x,H2) > 2kN(n), x ∈ Jl

}
∩ Ωl, (25)

and the event {
∀x ∈ Jl : An+kr(x,H2) ≥ 2kN(n)

}
(26)

is measurable

Proof of Fact 2. Using the definition of H1 = T (ε + η) and H2 = T (ε), if for some x′
and ω one has An+kr(x

′, H1)(ω) > 2kN(n), then for the same ω and for any x such that
|x − x′| < ηan+kr and bigger set H2 we also have An+kr(x,H2)(ω) > 2kN(n). Further,
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since Xk is ηa2n+kr+1 dense, for any x ∈ Jl we can find x′ ∈ X1 such that |x − x′| <
ηa2n+kr < ηan+kr. This proves (25).

It is remained to be proved that the event in (26) is measurable which is formally not
straightforward since x is running over interval Jl.

First, we note that it is enough to prove that for any fixed x′ ∈ Xk the event
{
∀x ∈

[
x′ − ηan+kr, x′ + ηan+kr

]
∩ Jl : An+kr(x,H2) ≥ 2kN(n)

}

is measurable since Xk is a finite set.
We have to take into consideration two facts. H2 is a union of finite number of intervals

and An+kr(x,H2) is a sum of finite number of indicator functions:

An+kr(x,H2) =
∑

Qi,j,|i|=|j|=n+kr

1 {Φ(Qi,j, x) ∈ H2} .

Therefore, the function An+kr(·, H2)(ω) for any ω is a jump function on T with finite
number of jumps. Let {ιi : i ∈ I} denote the partition of T into the intervals on which
An+kr(·, H2) is constant. So, An+kr(x,H2) depends on the interval ιi which x falls into.
Therefore,
{
∀x ∈

[
x′ − ηan+kr, x′ + ηan+kr

]
∩ Jl : An+kr(x,H2) ≥ 2kN(n)

}
={

∀i ∈ I such that ιi ∩
[
x′ − ηan+kr, x′ + ηan+kr

]
∩ Jl 6= ∅ : An+kr(ιi, H2) ≥ 2kN(n)

}
.

The last event is a measurable function of finite number of random variables {Jl} ∪ {ιi :
i ∈ I} ∪ {Qi,j, |i| = |j| = n+ kr} hence measurable.

As a consequence of Fact 2 we can exchange X1 with Jl and obtain

P (An+r(x,H2) > 2N(n), x ∈ Jl | Ωl) ≥ 1− (K2)n+rτN(n) = 1− a1(n).

For k = 0, using Lemma 6, the definition of Ωl and H1 ⊂ H2, we have

An(x,H2)(ω) ≥ An(x,H1)(ω) ≥ N(n) for all ω ∈ Ωl.

Therefore, we have (21) for M = 1:

P
(
An+kr(x,H2) > 2kN(n), 0 ≤ k ≤ 1, x ∈ Jl | Ωl

)
≥ 1− (K2)n+rτN(n) =

1− a1(n) > (1− a1(n))(1− a0(n)).

Now, assume that we have proved (23) for M − 1. We will prove it for M . The
simple fact that for every events A,B,C of positive probability we have: P(A ∩ B|C) =
P (A|B ∩ C) · P (B|C) yields

P
(
An+kr(x,H2) > 2k ·N(n),∀0 ≤ k ≤M, ∀x ∈ Jl | Ωl

)
=

P
(
An+Mr(x,H2) > 2M ·N(n), ∀x ∈ Jl | An+kr(x,H2) > 2k ·N(n),∀0 ≤ k ≤M − 1, ∀x ∈ Jl, Ωl

)
·

· P
(
An+kr(x,H2) > 2k ·N(n),∀0 ≤ k ≤M − 1, ∀x ∈ Jl | Ωl

)
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By induction, it is known that the second term on the right hand side is larger than∏M−1
k=0 (1 − ak(n)). Now we use a similar argument, to the one applied as in the case

M = 1, for proving that the first term, on the right hand side in the displayed formula
above, is larger than 1− aM(n). Namely, let Ωl,M−1 denote the event in the condition of
the first term:

Ωl,M−1 :=
{
An+kr(x,H2) > 2k ·N(n),∀0 ≤ k ≤M − 1, ∀x ∈ Jl,

}
∩ Ωl.

As in the proof of (22) we use Lemma 5. Let n′ = n + (M − 1)r, C = An+(M−1)r(x,H2)
then for any x ∈ Jl we have

P
(
An′+r(x,H1) ≤ 2 · 2M−1N(n) | Ωl,M−1

)
≤ τ 2M−1N(n).

This can be proved in exactly the same way as (22) was proved. The continuation is also
similar, we first take a dense set XM and prove the counterpart of (24), that is,

P
(
An′+r(x,H1) > 2 · 2M−1N(n), x ∈ XM | Ωl,M−1

)
≥ 1−(K2)n+Mrτ 2M−1N(n) = 1−aM(n).

Applying Fact 2 again yields

P
(
An+Mr(x,H2) > 2M ·N(n), ∀x ∈ Jl | Ωl,M−1

)
≥ 1− aM(n)

using An+Mr(x,H2) = An′+r(x,H2). This finishes the proof of Lemma 7.

Now, we are ready to finish the proof of Theorem 2.

Proof of Theorem 2 . Using Lemma 7 we have

P (Π(C1 − C2) contains an interval | Ωl) ≥ P (Π(C1 − C2) contains Jl | Ωl) ≥

P
(
An+Mr(x,H2) > 2M ·N(n), ∀M, ∀x ∈ Jl | Ωl

)
>
∞∏

k=0

(1− ak(n)) > 1− 2
∞∑

k=0

ak(n)

Getting rid of the condition, we obtain that

P (Π(C1 − C2) contains an interval ) =

L∑

l=1

P (Π(C1 − C2) contains an interval | Ωl) P(Ωl) >

(
1− 2

∞∑

k=0

ak(n)

)
L∑

l=1

P(Ωl) = 1− 2
∞∑

k=0

ak(n) > 1− ξ.

Since ξ can be chosen arbitrarily small this proves Theorem 2.
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5 Kernel of the branching process
In Sections 5 and 6, we prove the Main Lemma. In Section 5 we introduce several notations
and determine support of the kernel of our branching process. The proof of Main Lemma
starts in Section 6.

5.1 Types, stripes, and holes

Remember that we defined in Section 3.1 the renormalization operator Φ(Q, x). In the
special case when Qij is a level-1 cylinder square which is the ith horizontally and the jth
vertically we write Φij(x) := Φ(Qij, x). That is if the type of the ancestor is x then the
type of the descendant is determined by Qij is denoted by Φij(x), where

Φij(x) :=





x+ U
(1)
i − U (2)

j

a
if e(x) intersects Qij,

Θ otherwise,

(27)

where
(
U

(1)
i , U

(2)
j

)
is the left bottom corner of Qij. Note that U

(1)
i is independent of U (2)

j .
Next, we are about to investigate the support of the kernel of our branching process

m introduced in Section 3.4. Denote by φij(x) the density function of Φij(x). Note that
it is not always a probability density function since it may have an atom at Θ. Recalling
the argument in (11) we have

m(x, y) =
K∑

i,j=1

φij(x, y)1{(x, y) ∈ [−1, 1]× [−1, 1]}.

We deal with the support of m

suppm =
K⋃

i,j=1

{(x, y) : −1 ≤ x, y ≤ 1, y ∈ suppφij(x)} .

We claim that suppm can be written in the following form

suppm =
K−1⋃

k=−K+1

Sk, (28)

where
Sk =

⋃

s:1≤s,s+k≤K
{(x, y) : −1 ≤ x, y ≤ 1, y ∈ suppφs+k,s(x)}, (29)

is a slanted stripe, see Figure 5. Moreover, we will determine the boundaries of Sk the
lines `2k−1 and `2k, k = −K, . . . ,K for which

Sk = {(x, y) : −1 ≤ x, y ≤ 1, `2k−1(x) ≤ y ≤ `2k(x)} (30)
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Or first step toward this direction is determining the support of φij(x) for any i, j =
1, . . . K. By construction, suppUi ⊂ [a(i − 1), 1 − a(K − i)]. More precisely, there exist
αi, βi ≥ 0 such that

min{suppUi} = a(i− 1) + αi and max{suppUi} = 1− a(K − i)− βi.

Using (27), we have

1

a

(
x+ minU

(1)
i −maxU

(2)
j

)
≤ 1

a

(
x+ U

(1)
i − U (2)

j

)
≤ 1

a

(
x+ maxU

(1)
i −minU

(2)
j

)

hence

1

a
(x+ a(i− 1) + αi − 1 + a(K − j) + βj) ≤

1

a

(
x+ U

(1)
i − U (2)

j

)
≤

1

a
(x+ 1− a(K − i)− βi − a(j − 1)− αj) .

As a conclusion we get

suppφij =[
1

a
(x+ a(i− 1) + αi − 1 + a(K − j) + βj) ,

1

a
(x+ 1− a(K − i)− βi − a(j − 1)− αj)

]
.

(31)

Observe that if i− j is constant, say i = j + k, then the support of Φij(x) depends on
k, see Figure 5, and the numbers αi + βj and −βi−αj. This implies that we can arrange
the support of m as it was stated in (28) and (29). Next, we determine the boundaries in
(30) for which

Sk = {(x, y) : −1 ≤ x, y ≤ 1, `2k−1(x) ≤ y ≤ `2k(x)}.
Using the (31) and the remark after it one can find that the lines `2k−1, `2k can be written
in the following form:

`2k−1(x) =
1

a

(
x− 1 + a(k +K − 1) + min

s:1≤s+k,s≤K
{αs+k + βs}

)

`2k(x) =
1

a

(
x+ 1 + a(k −K + 1)− min

s:1≤s+k,s≤K
{βs+k + αs}

)

An immediate calculation shows that

Lemma 8. For every x ∈ [−1, 1] and for every i, j = 1, . . . , K if Φij(x) 6= Θ then

(x,Φij(x)) ∈ S−K+1 ∪ · · · ∪ SK−1.
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Q12

Q21 Q22

QKK

Q2K

QK−1,1

Q1,K−1

QK2

Q1K

QK1

Q11

1

1

S0

SK−1 SK−2

S−K+1

S−K+2

Figure 5: The level 1 cylinder squares and the connection between the cylinder squares and stripes
S−K+1, . . . , SK−1.

Let us call `j the graph of the function `j(x). For a point (x1, x2) ∈ R2 we write
πm(x1, x2) := xm, m = 1, 2. Then we define c1, c2 > 0 by

−1 + c1 := π1

(
`2(−K+1) ∩ {y = x}

)

and
1− c2 = π1

(
`2(K−1)−1 ∩ {y = x}

)
.

The functions `2(−K+1)(x), `2(K−1)−1(x), these are the most left and the most right lines,
have repelling fixed point −1 + c1, 1− c2 respectively. Therefore

x ∈
[
−1,−1 + c1

)
∪
(
1− c2, 1

]
=⇒ ∃n; e(x) ∩Q = ∅ for all Q ∈ Sn. (32)

Further,

x ∈
[
−1,−1 + c1

]
∪
[
1− c2, 1

]
=⇒ Φij(x) ∈

[
−1,−1 + c1

]
∪
[
1− c2, 1

]
if Φij(x) 6= Θ.

(33)

5.2 The possible holes in the support of the kernel of Z
We have seen in (32) that the branching process with ancestor type in the set [−1,−1 +
c1] or [1 − c2, 1] dies out in a finite number of generations almost surely. Therefore,
it is reasonable to restrict the type space to [−1 + c1 + ε, 1 − c2 − ε] for some small
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positive ε. However, in some cases we have to make further restrictions. Namely, for
i = −K + 2, . . . , K − 1 we define

ui := π1

(
`2i−3 ∩

{
y = 1− c2

})
, vi := π1

(
`2i ∩

{
y = −1 + c1

})
, (34)

see Figure 6. If ui < vi for some i = −K + 2, . . . , K − 1 holds then for x ∈ [ui, vi] the set

E1(x) := {y : m(x, y) > 0} (35)

is contained in [−1,−1 + c1] ∪ [1 − c2, 1], for example u0 and v0 have this property in
Figure 6. This and (32) imply that the process dies out in finitely many steps for x ∈
(ui, vi) (see Figure 6). Therefore, we have to make more restrictions on our type space
[−1 + c1 + ε, 1 − c2 − ε], for example the interval [ui, vi] has to be thrown out. These
further restrictions will be determined precisely in the next section.

6 Construction of a uniformly positive kernel
In this section, we will prove the Main Lemma. Now, we state it again in a more informal
way.

Theorem 4 (Main Lemma). Let us be given a homogeneous RIFS G, and denote by m
the kernel determined by G in Section 5. There exist a set of open intervals, T (0) and a
real number ε0 > 0 such that for any ε ∈ (0, ε0) the set

T (ε) := T (0) \B(∂T (0), ε)

is a type space such that

1. T (ε) is consists of as many intervals as T (0) does.

2. condition (C1) satisfies, that is, the kernel

mε := m |T (ε)×T (ε)

is uniformly positive and bounded.

3. the Perron-Frobenius eigenvalue of m |T (ε)×T (ε) is larger than 1.

4. the corresponding eigenfunction is continuous on T (ε).

The construction of type space T (ε) (ε ∈ (0, ε0)) consists of two steps. We will call
any open subset of [−1, 1] a pre-type space. First we inductively construct a sequence
of pre-type spaces T 0 ⊃ T 1 ⊃ · · · ⊃ T l. Those elements of T l which are “far” from the
endpoints of the components of T l satisfy (36). (We define T (0) := Tl.) Unfortunately,
the same does not hold for the points close the the boundary of the components of T l. So,
as a second step of the construction of T we remove a small neighborhood of the boundary
of T l from T l. So we obtain T (ε).
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Lemma 9. There exist a restriction of the pre-type space (−1 + c1, 1 − c2), T (0) and a
real number ε1 > 0 such that the kernel mε of the branching process Z with type space
T (ε) for any ε ∈ (0, ε1) satisfies

∀ε ∈ (0, ε1)∃κ(ε) > 0 such that ∀x ∈ T the set E1(x) = {y : mε(x, y) > 0} (36)
contains an interval of length at least κ(ε).

Further, for any ε ∈ (0, ε0) T (ε) consists of as many interval as T (0).

1−1

ℓ1

ℓ2

ℓ−1

ℓ0

ℓ−3

ℓ−2

{y = u0}

{y = v0}

u0 u1v0 v1

u0,−1 u00

v0,−1

v00

−1 + c1

−1 + c1

1− c2

1− c2

S−K+1 = S−1 S0 SK−1 = S1

type of the ancestor

ty
p
e
s

o
f
th

e
d
e
sc

e
n
d
a
n
ts

Figure 6: Some points and lines related to the kernel m(x, y) if l = 1

Proof of Lemma 9. We recall that uk, vk, −K + 2 ≤ k ≤ K − 1 were defined in (34) and
we take the pre-type space T 0 := (−1+c1, 1−c2). If vk < uk for any −K+2 ≤ k ≤ K−1
then we define l := 0.

If for some −K + 2 ≤ k ≤ K − 1 uk ≤ vk, then we have to subtract [uk, vk] from the
pre-type space T 0 to insure that (36) holds (cf. Figure 6). Let K1 be the set of such i’s,
that is,

K1 = {k : −K + 2 ≤ k ≤ K − 1, uk ≤ vk}.
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Remark that if x ∈ [uk, vk] (k ∈ K1) then the types of descendants of x fall into the set
[−1, 1] \ T 0. So, we restrict ourselves to the next level pre-type space:

T 1 = T 0 \
(⋃

i∈K1

[ui, vi]

)
.

We define the second generation endpoints uik and vik as follows

uik = π1({y = ui} ∩ `2k−1) and vik = π1({y = vi} ∩ `2k)

for any i ∈ K1 and −K + 1 ≤ k ≤ K − 1, see Figure 6. If vik < uik for any i ∈ K1

and −K + 1 ≤ k ≤ K − 1, then we define l := 1. Otherwise, if uik ≤ vik for some
−K + 2 ≤ i ≤ K − 1 and −K + 1 ≤ k ≤ K − 1 we have to subtract [uik, vik] from
the pre-type space T 1 because if x ∈ [uik, vik] then the types of descendants of x fall
into the set [−1, 1] \ T 1, that is, into an already removed set. So, let K2 be a subset of
K1 × {−K + 1, . . . , K − 1} such that if i ∈ K2 then ui ≤ vi. In this way, we define the
next level pre-type space:

T 2 = T 1 \
(⋃

i∈K2

[ui, vi]

)
.

We continue defining the sets T r and the endpoints of the subtracted intervals as
follows: for i ∈ Kr−1 and −K + 1 ≤ k ≤ K − 1 let

uik = π1({y = ui} ∩ `2k−1), and
vik = π1({y = vi} ∩ `2k).

(37)

Let
Kr = {ik ∈ Kr−1 × {−K + 1, . . . , K − 1} : uik ≤ vik}.

If Kr = ∅, then l = r − 1. If Kr 6= ∅, then we remove the intervals [uik, vik] for ik ∈ Kr
from the type space. Thus, let

T r = T r−1 \
(⋃

i∈Kr

[ui, vi]

)
. (38)

This construction ends at step l for some l because there exists an l such that

for any ik ∈ Kl × {−K + 1, . . . , K − 1} vik < uik. (39)

Now, we will prove that there exists an l with this property. For i ∈ Kr for some r let

%i = vi − ui

the length of the removed interval [ui, vi]. By construction, see also the left hand side of
Figure 8, one can easily check that for i ∈ Kr (for some r) and k ∈ {−K + 1, . . . , K − 1}

%ik = a(%i − (`2k(x)− `2k−1(x))). (40)
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It is enough to prove that after finite number of steps the left hand side becomes negative.
For showing this we recursively define

ρr+1 = a(ρr − min
k∈{−K+1,...,K−1}

(`2k(x)− `2k−1(x))), ρ1 = max
k∈{−K+2,...,K−1}

(vk − uk).

By construction %i ≤ ρr for any i ∈ Kr. Since there exists an r for which ρr+1 < 0 it is
clear that there exist an l for which (39) holds.

{y = ui}

{y = vi}

uik

vik

{y = ui}

{y = vi}

uik

vik

ρi

ρik

ρi

−ρik

ℓ2k ℓ2kℓ2k−1 ℓ2k−1

Figure 7: The computation of %ik

We can represent T l as follows

T l =
τ⋃

i=1

(αi, βi).

for some positive integer τ .
We need further restrictions because around the endpoints αi, βi condition (36) is not

satisfied. Therefore we remove sufficiently small intervals from both ends of each intervals
of T l. Namely, we define the type space of the process by

T (ε) :=
τ⋃

i=1

[αi + ε, βi − ε], (41)

where
0 < ε < ε1, (42)

where the value ε1 will turn out during the proof below. The first bound for ε1 is that
T (ε) has to consists of as many intervals as T (0) so by introducing

ε(1) =
1

2
min
i=1,...,r

{βi − αi}
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ε

ε

ε

1
aε− ε
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Figure 8: Stripe Sk and level l squares.
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the following inequality has to hold

ε1 < ε(1).

Now, we prove that (36) holds and find further bounds for ε1. That is, we want to
estimate the length of the longest interval in E1(x) from below. The argument uses only
elementary geometry.

For any x ∈ T (ε) there is an index k(x) ∈ {−K + 1, . . . , K − 1} such that the inter-
section E∗1(x) = E1(x)∩ (`2k(x)−1(x), `2k(x)(x)) is not empty. If there are more indices pick
the one for which the measure of the intersection is the largest. Note that the vertical line
through x intersects the stripe Sk(x) in a (vertical) interval of length `2k(x)(x)−`2k(x)−1(x).

Since there are many holes in T (ε), for some x ∈ T (ε), the set E1(x) may consists of
several subintervals. We prove that the maximum length of these intervals is uniformly
bounded away from zero.

Fix an arbitrary x ∈ T (ε). We separate four cases.
(1) Assume that (`2k(x)−1(x), `2k(x)(x)) is contained in [αj + ε, βj − ε] for some j. By
elementary geometry we obtain that E1(x) is an interval of length `2k(x)(x)− `2k(x)−1(x).
This case does not affect the choice of ε1. Hence, E1(x) is an interval of length at least

κ(1)(ε) := min
−K+1≤k≤K−1

{`2k(x)(x)− `2k(x)−1(x)}.

(2) Assume that (1) does not hold. Assume that E1(x) = (`2k(x)−1(x), `2k(x)(x))∩ T (ε) ⊃
[αj + ε, βj − ε] for some j. In this case E1(x) contains an interval of length βj − αj − 2ε.
If

ε < ε(2) :=
1

2
min

j∈{1,...,τ}
{βj − αj} ,

then we can say that E1(x) contains an interval of length at least κ(2)(ε) := 2ε(2) − 2ε.

(3) Assume that neither (1) nor (2) holds. Assume that for some i ∈ K := K1 ∪ · · · ∪ Kl
(`2k(x)−1(x), `2k(x)(x)) ∩ [ui, vi] 6= ∅ but uik(x) > vik(x).

Therefore, [vik(x), uik(x)] ⊂ T . This is the case that is depicted in Figure 8A and the right
sub figure in Figure 7. Hence

uik(x) − vik(x) = −a(%i − min
k∈{−K+1,...,K−1}

(`2k(x)(x)− `2k(x)−1(x))) > 0.

Elementary geometry shows that E1(x) contains an interval of length
−1

2
1
a
a(%i − (`2k(x)(x)− `2k(x)−1(x))). If ε is selected so that

ε < ε(3) :=
1

2a
min
i∈K,k

{
−a(%i − (`2k(x)− `2k−1(x)))

}
,

then we can say that E1(x) contains an interval of length at least

κ(3)(ε) = 2ε(3) − 2ε.
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(4) Assume that nor (1) neither (2) hold. Assume that for some i ∈ K := K1 ∪ · · · ∪ Kl

(`2k(x)−1(x), `2k(x)(x)) ∩ [ui, vi] 6= ∅ and uik(x) ≤ vik(x),

that is, ik ∈ K as well. This is the case that is depicted in Figure 8B. This means that
(`2k(x)−1(x), `2k(x)(x)) contains an interval of length

κ(4)(ε) := min
j∈{1,...,τ}

{βj − αj} ∧
(

1

a
ε− ε

)
> min

j∈{1,...,τ}
{βj − αj} ∧ ε(K − 1)

if ε > 0. Hence, case (4) does not restrict the set of possible ε.

Summarizing these cases, if

ε1 := min{ε(1), ε(2), ε(3)}

0 < ε < ε1, then (36) holds with

κ(ε) = min{κ(1)(ε), κ(2)(ε), κ(3)(ε), κ(4)(ε)}.

We have to remark that by the construction of the pre-type spaces T0, T1, . . . , Tl in
Lemma 9 we obtain the following (recall that T (0) = Tl)

Fact 3. If x ∈ [−1, 1] \ T (0) then the types of any offspring of x fall into [−1, 1] \ T (0)
with probability 1.

We will now deal with the problem of still having a kernel with largest eigenvalue
larger than 1.

Lemma 10. Let mε be the kernel in Lemma 9 with type space T (ε), ε ∈ (0, ε1). There
exists an ε0, 0 < ε0 ≤ ε1 such that if ε ∈ (0, ε0), then the largest eigenvalue of mε is larger
than 1.

Proof. It is enough to prove thatK2a is an eigenvalue of the operator Tl with eigenfunction
h(x) = 1T l(x) where T l is defined in the proof of Lemma 9:

Tlh(y) =

∫

R
h(x)m(x, y) dx

=

∫

R
h(x)

( K∑

i,j=1

φij(x, y)
)
1T l(y) dx

= K2ah(y)

∫

T l

K∑

i,j=1

φij(ay − x) dx

= K2ah(y),
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provided we show that for all i, j = 1, . . . , K and for all y ∈ T l
∫

T l

φij(ay − x) dx = 1.

So we have to show that for all y ∈ T l and for i, j = 1, . . . , K

{x : φij(ay − x) > 0} ⊂ T l. (43)

This holds since we constructed the intermediate type space T l so that this property is
satisfied, see the left figure in Figure 7: we have subtracted intervals of the form [uik, vik]
in (38) during the construction of successive intermediate type spaces T r, r = 1, . . . , l. If
y ∈ T r then each interval of the form of [uik, vik] is disjoint of (`−1

2k (y), `−1
2k−1(y)) for all y ∈

T l and k ∈ {−J+1, . . . , K−1}. Therefore, for any y ∈ T l we have (`−1
2k (y), `−1

2k−1(y)) ⊂ T l.
Further, for any i, j = 1, . . . , K there exists a positive integer (and corresponding stripe)
kij ∈ {−K + 1, . . . , K − 1} such that

{x : φij(ay − x) > 0} = (`−1
2kij

(y), `−1
2kij−1(y)).

Hence, (43) holds.
The conclusion of the lemma follows from a simple fact noted by Larsson [6]: If the

two kernels m0 and mε are close to each other in L2 sense, then the eigenvalues of the
operators T0 and Tε, determined by the kernels m0 and mε respectively, are close to each
other.

Finally, let ε0 ≤ ε1 be chosen such that for any ε ∈ (0, ε0) the eigenvalue of Tε is larger
than 1.

Lemma 11. Let T (ε), ε ∈ (0, ε0) be as in Lemma 10. Then there exists an n such that
for all x ∈ T (ε), {y : mε

n(x, y) > 0} = T (ε).

Proof. Fix ε ∈ (0, ε0) and for simplicity let κ := κ(ε), m := mε, and T := T (ε).
We will prove the lemma in two steps. We define

En(x) := {y : mn(x, y) > 0}.

dStep 1 ∀x ∈ T,∃i, n such that [αi + ε, βi − ε] ⊂ En(x) implies that En+l(x) = T .

dStep 2 There exists an N such that for every x ∈ T we can find a positive integer n(x) ≤ N
such that the following holds

∃i, [αi + ε, βi − ε] ⊂ En(x)(x).

As a corollary of these two statements we obtain the assertion of the lemma holds with
the choice of n = N + l. Namely, for any x ∈ T we have EN+l(x) = T .

Next, we prove Step 1 and Step 2 separately. The ideas of th proof are borrowed from
[2].
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Proof of Step 1: To verify Step 1 first we observe that we can derive En+1(x) from
En(x) by means of the equation

mn+1(x, y) =

∫

T

mn(x, z)m1(z, y) dz,

which implies
En+1(x) =

⋃

z∈En(x)

E1(z).

Using this formula and (28), (29), and (30), we obtain that

En+1(x) =
⋃

z∈En(x)

E1(z) =
⋃

z∈En(x)

(
K−1⋃

k=−K+1

(`2k−1(z), `2k(z))

)
∩ T. (44)

For some i = 1, . . . , τ fix [αi + ε, βi − ε]. First, we define αi,l−r and βi,l−r for r =
0, . . . , l inductively. For r = 0 let (αi,l, βi,l) := (αi, βi). Assume that we have already
defined (αi,l−r, βi,l−r). Using (37) we define αi,l−(r+1) and βi,l−(r+1) as the unique numbers
satisfying:

αi,l−r = π1

({
(x, y) : y = αi,l−(r+1)

}
∩ `2k(r)−1

)
,

βi,l−r = π1

({
(x, y) : y = βi,l−(r+1)

}
∩ `2k(r)

)
,

(45)

where k(r) ∈ {−K + 1, . . . , K − 1}. Then by the construction we have (αi,0, βi,0) =
(−1+c1, 1−c2). Note that it may happen that (αi,l−s, βi,l−s) = (−1+c1, 1−c2) for s > 1.
Let x ∈ T . According to the assumption of Step 1 we can find i, n such that

[αi + ε, βi − ε] = (αi, βi) ∩ T ⊂ En(x) (46)

holds. Using induction we prove that

En+r(x) ⊃ (αi,l−r, βi,l−r) ∩ T for 0 ≤ r ≤ l. (47)

Namely, for r = 0 the assertion in the induction is identical to (46). Now we suppose that
(47) holds for r < l. By (44) and (45) we have

En+r+1(x) =
⋃

z∈En+r(x)

E1(z)

⊃
⋃

z∈(αi,l−r,βi,l−r)∩T
(`2k(r)−1(z), `2k(r)(z)) ∩ T

= (αi,l−(r+1), βi,l−(r+1)) ∩ T,

which completes the proof of (47). We apply (47) for r = l. This yields that En+l =
(−1 + c1, 1− c2) ∩ T = T holds.

Proof of Step 2: First, in Case (2) in the end of the proof of Lemma 9 E1(x) =
[αi + ε, βi − ε] for some i. So, in this case the statement of the lemma is settled.
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Second, observe that the largest interval in E1(x) either has an endpoint that is an
endpoint of a connected component of T (this happens in case (3) and (4) in the end of
the proof of Lemma 9) or E1(x) = (`2k(x)−1(x), `2k(x)(x)) (which is case (2) in the same
proof). However, in the last case using (44), after N1 steps, where N1 is the smallest
solution of the inequality

(
2

a

)N1

· min
k∈{−K+1,...,K−1}

(`2k(x)(x)− `2k(x)−1(x)) > max
i=1,...,τ

(βi − αi − 2ε)

we obtain that the largest interval contained in EN1(x) has an endpoint of a connected
component of T (see Figure 8) and its length is longer than κ. In this way because of the
symmetry between the endpoints of the connected components of T from now on we may
assume that [αi + ε, αi + ε+ w1) ⊂ E1(x) where w1 ≥ κ. Using (44) we can write

E2(x) ⊃
⋃

z∈[αi+ε,αi+ε+w1)

(`2k1−1(z), `2k1(z)) ∩ T (48)

= (`2k1−1(αi + ε), `2k1(αi + ε+ w1)) ∩ T
= [α(2) + ε, α(2) + ε+ w2) ∩ T

for some k1 ∈ {−K + 1, . . . , K − 1}, left endpoint α(2) ∈ T and w2 > 1
a
w1 ≥ 1

a
κ. If

[α(2) + ε, α(2) + ε + w2) ∩ T does not contain a connected components of T then we can
inductively define for En(x), n ≥ 3 we can define inductively kn, left endpoint α(n), and
length wn in the same way as above. Observe that wn >

(
1
a

)n−1
κ for any n ≥ 2. Let N2

the smallest solution of the inequality
(

1

a

)N2−1

κ > max
i=1,...,τ

(βi − αi − 2ε).

Then EN2(x) surely contains a connected component of T . However, it may happen that
for n < N2 En(x) contains a connected components of T .

Let N = N1 +N2. Then EN(x) contains a connected component of T .

Proof of Main Lemma. Let ε0 be the same as in Lemma 10 and let T (ε), ε ∈ (0, ε0) the
type space constructed in Lemma 9. Then we have the followings:

Statement (1) has been proved in Lemma 9.
Statement (2) follows from Lemma 11. Indeed, the uniformly positivity has been

proved there, the boundedness of mε follows from the fact that mε is continuous on the
compact set T (ε).

Statement (3) has been proved in Lemma 10.
Statement (4) follows from the fact that mε is continuous on T (ε) × T (ε). Indeed,

denoting by f the eigenfunction, we have %f(x) =
∫
mε(x, y)f(y) dy and mε continuous

in x.

33



Bibliography

[1] Luis Barreira (2008). Dimension and recurrence in hyperbolic dynamical dynamics,
Progress in Mathematics, Vol. 272, Birkhauser.

[2] Michel F. Dekking, Károly Simon, and Balázs Székely (2011). The algebraic
difference of two random Cantor sets: The Larsson family The Annals of Probability,
39 (2): 549-586.

[3] Theodore E. Harris. (1963). The theory of branching processes. Dover Phoenix
Editions. Springer, Berlin, 1963. Corrected reprint of the 1963 original [Springer,
Berlin; MR0163361 (29 #664)].

[4] Wassily Hoeffding (1963). Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58 no. 301, 13-30.

[5] Per Larsson. (1991). The difference set of two Cantor sets. PhD thesis, U.U.D.M.
Report, 1991:11.

[6] Per Larsson. (1990). L’ensemble différence de deux ensembles de Cantor aléa-
toires. (French. English summary) [The difference set of two random Cantor sets].
C. R. Acad. Sci. Paris Sér. I Math., 310 (10): 735–738.

[7] Carlos Gustavo T. de A. Moreira and Jean-Christophe Yoccoz (2001).
Stable intersections of regular Cantor sets with large Hausdorff dimensions. Ann. of
Math. (2), 154(1):45–96.

[8] Michal Rams, Károly Simon (2011). Projection of fractal percolations Submitted
to ...

[9] Jacob Palis and Floris Takens. (1993). Hyperbolicity and sensitive chaotic dy-
namics at homoclinic bifurcations, Volume 35 of Cambridge Studies in Advanced Math-
ematics. Cambridge University Press, Cambridge.

[10] Yuval Peres, Pablo Shmerkin (2009). Resonance between Cantor sets Ergodic
Theory and Dynamical Systems, 29: 201-221.

34


	Introduction and main results
	The formal description of our Random Cantor set

	The proof of the main result
	The idea of the proof of Theorem 2 and the Main Lemma
	The renormalization operator 
	Idea of the proof of Theorem 2
	The probability space of the squares
	The branching process
	Supercritical branching process with uniformly positive kernel

	The proof of Theorem 2 assuming Main Lemma
	Kernel of the branching process
	Types, stripes, and holes
	The possible holes in the support of the kernel of Z

	Construction of a uniformly positive kernel

