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Abstract—Provisioning QoS network connections with the
desired availability relies on estimating the availability of the
connections in advance. The redundancy of the protection – which
denotes how many failures can be survived – gives a good hint on
the availability, thus lower bound estimation can be carried out.
If we want to achieve a more accurate approximation, we have
to use other methods. The Serial-Parallel availability modeling
and calculation method, based on the availability metrics of the
components of the connection, offers a fast estimation, with the
complexity of O(n) in case of n components. However, the result
of this estimation can be inaccurate since the model does not
take into account the overlapping of components, i.e., when a
component is member of more different series.

In this paper we analyze the inaccuracy of the Serial-Parallel
method. We prove that the estimated availability is always less
than the exact one, define an upper bound onto the inaccuracy
of the estimated unavailability and show where does this inac-
curacy converge by increasing the availability of the network
components.

Index Terms—availability, conditional probability, protection.

I. INTRODUCTION

Measuring and estimating the availability of network de-

vices and connections is important since the provisioned

network connections have to fulfill predefined availability

requirements. The availability of a network device can be

improved by extending its mean time to failure (MTTF) or

by shortening its mean time to repair (MTTR) attribute.

Assuming these attributes are predefined, generally, high con-

nection availability can be achieved by setting up redundant

backup paths along the working path, which are protecting

parts (links or segments) of it or the whole path (end-to-end

protection). However, the more complex the protection is, the

more resources the connection requires [1], [2], and the more

difficult is to derive its availability.

The availability of connection using dedicated protection

can be estimated accurately, since the backup paths do not

interfere. However, if the backup resources are shared, the
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availability estimation may become a complex problem. Ex-

haustive availability evaluation has to enumerate each possible

network failure state variation, which can be carried out only

for small systems. With stratified sampling we can eliminate

the state space while achieving still a good approximation

[4]. In [5], [6], [7] routing algorithms for shared protection

with guaranteed availability are proposed without evaluating

the exact connection availability.

The p-cycle protection scheme [9] provides a special way

resource sharing, and in [8] we already have presented a fast

evaluation method of the accurate availability for p-cycle-

protected connections. Among the numerical results of [8] we

compared the accurate availability to the availability estimated

with the well-known Serial-Parallel (S-P) method1 [10] and the

experienced behaviour of the inaccuracy lead us to study the

S-P heuristic more deeply in link-protected connections.

The rest of the paper is organized as follows. In the next

section we define the scope of the work and introduce the

notation for our availability model. In Sect. III we examine

S-P inaccuracy with single link overlaps, next, in Sect. IV

we extend these single overlaps to multiple link overlaps and

deduce lower, upper bounds and limit value of the error of

S-P method. Illustrative examples are studied in Sect. V, and

finally, Sect. VI summarizes the results of the work.

II. NOTATION AND SCOPE OF THE WORK

The network consists of atomic components which may fail.

The whole set of these components is denoted by E, while

for denoting a single component we use e (e ∈ E) which is

used usually with an index or other special markings (e.g.,

ei, e∗, etc.) In our availability model we assume that each

network component e has two states (S(e)): it may be either

operational (up, S(e) = 1) or in failure (down, S(e) = 0)
state, and the state of each component is independent from

the state of any other component (∀e′, e′′ ∈ E, e′ 6= e′′ :
S(e′)|S(e′′) = S(e′)). The availability of a component is a

1The principle behind the Serial-Parallel method is that if dual-state
(up/down) components are connected serially, the series is up only if all

the components are up; whereas a block of parallelly switched components
requires only a single component to be in up state.
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probability metric indicating that the component is in up state:

A(e) = P (S(e) = 1), whereas the unavailability is the inverse

of the availability: U(e) = P (S(e) = 0) = 1 − A(e).
We examine individual connections. The connection is

denoted by conn , using the set components C ⊂ E. The

state and the availability metric is also defined for connections.

We assume that the state of the connection depends only on

the atomic states of its components. In other words, the state

of a foreign component does not influence the state of the

connection: ∀e /∈ C : S(conn)|S(e)=1 = S(conn)|S(e)=0.

Note, that this assumption constrains the scope of the work,

since the most of the protection strategies that share resources,

do not fulfill this requirement. Although the p-cycle protection

also shares resources, it is a kind of self-sharing, i.e., the

shared resources themselves form the backup paths, thus they

all – as shared components, which may influence the state of

the connection – are member of set C [8]. This is an important

remark since the results of this work were applied first of all

onto p-cycle protected networks.

The state of the connection – derived merely from the state

of the components – is also binary: the connection is either

up (S(conn) = 1) or down (S(conn) = 0). This means that

we do not take into account reconfiguration transients trig-

gered by failures on the operational (working) path, when the

connection, or a segment of it (in case of segment-protections

[11]), has to be switched to an alternate (backup) path. For

the availability of the connection and its approximation we

use the following notations: AACC = P (S(conn) = 1) is

the accurate availability estimation with the corresponding

UACC = 1 − AACC unavailability, whereas ASP (with

USP = 1 − ASP ) is the availability metric of the connection

estimated by the Serial-Parallel method.

We assume that the connection is a series of protected links.

The length of the connection is n, meaning that along the

default path n+1 nodes (0th is the source node, nth is the des-

tination) are connected with n links. If we split the connection

at the ith node into two, we get connH
i and connT

i as the head

and the tail of the connection, with components enumerated

in set Hi = {eh1, eh2, ...ehh} and set Ti = {et1, et2, ...ett},
so that the concatenating the tail to the head results in the

original connection without any loss or surplus: ∀0 ≤ i ≤
n : conn = connH

i .connT
i . Moreover the head and the tail

part inherit the protection of the member links, resulting in

S(conn) = 1 ⇐⇒ S(connH
i ) = 1 ∧ S(connT

i ) = 1. Still
AACC (conn) 6= AACC (connH

i ) · AACC (connT
i ), except for

cases when S(connH
i ) and S(connT

i ) are independent. As

we assumed that the states of the atomic components are

independent, dependency between S(connH
i ) and S(connT

i )
can be observed if and only if connH

i and connT
i have

some components in common. We call them overlapping links

(defined by the intersection Hi

⋂

Ti).

In fact, this is where the inaccuracy of the S-P method

comes from, since it uses the heuristic

ASP (conn) = AACC (connH
i ) · AACC (connT

i ), (1)

instead of the accurate

AACC (conn) = AACC (connH
i ) · AACC (connT

i |connH
i )

(2)

( = AACC (connT
i ) · AACC (connH

i |connT
i )).

In the sections where we examine state dependencies we

will show figures (Fig. 1,2,3) illustrating the availability in

two-dimensional probability square. The two dimensions of

these squares correspond to the state and availability of connH
i

and connT
i . Then, the availability of the whole connection can

be evaluated merely by accumulating the rectangular areas

where both of connH
i and connT

i are available. The only

difference between evaluating AACC and ASP is that in case

of dealing with AACC in the dimension of connT
i we will

use different conditional availability metrics depending on the

state of the not independent (i.e., overlapping) components.

Our last assumption is that state of the connection is a

monotonous function of the state of its components. In other

words, improving the state of any component from failure to

operational cannot deteriorate the state of the connection, and

taking any component into down state cannot result in repaired

connection.

III. SINGLE LINK OVERLAP

First, we examine a simple connection in which there is a

single link overlap when split into two at the ith node. The

common link is eh∗ = et∗ .
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Fig. 1. Visual representation of the estimated and the exact availability and
their difference

Figure 1 compares the availability got by the serial-parallel

method (ASP ) to the exact availability (AACC). For the sake

of simplicity we use the following notation:

A = P (S(eh∗) = 1) = P (S(et∗) = 1) – the availability

metric of the investigated link.

U = P (S(eh∗) = 0) = P (S(et∗) = 0) – the unavailability

metric of the investigated link.

x1 = P (S(connH
i ) = 0|S(eh∗) = 1) – is the ratio of “bad”

states of connH
i (when the connection is not available)

in case of link eh∗ is up.

x2 = P (S(connH
i ) = 0|S(eh∗) = 0) is the probability that

connH
i is down in case of link eh∗ is down.

y1 = P (S(connT
i ) = 0|S(et∗) = 1) is the probability that

connT
i is down in case of link et∗ is up.

y2 = P (S(connT
i ) = 0|S(et∗) = 0) is the probability that

connT
i is down in case of link et∗ is down.



We introduce two derived metrics which help us to express

the difference between ASP and AACC :

dx = x2 − x1,

dy = y2 − y1,

indicating how much does connH
i depend on eh∗ and connT

i

on et∗ .

Note that A+U = 1 as they are complementary probabilities

and we assume that x1 ≤ x2 and y1 ≤ y2 (implying dx, dy ≥
0) due to the monotonity assumption – as the probability of

connection unavailability if a link is down is always higher or

equal compared to the case when that link is up.

Figure 1 also shows how the availability probability metrics

(AACC , ASP ) of the connection can be calculated in a

geometric way:
AACC =A(1 − x1)(1 − y1) + U(1 − x2)(1 − y2) (3)

ASP =
(

A(1 − x1) + U(1 − x2)
)

·
(

A(1 − y1) + U(1 − y2)
)

(4)

and how much is the difference between them:
Diff = AACC − ASP = Diff ⊕ − Diff ⊖ (5)

This difference is of high importance in our analysis, so we

extract it: Diff ⊕ = A(y2 − y1) · U(1 − x1) (6)

Diff ⊖ = U(y2 − y1) · A(1 − x2) (7)

resulting in Diff = Diff ⊕ − Diff ⊖

= AU(y2 − y1)(x2 − x1)

= AUdxdy (8)

Note that Diff is non-negative as all of its coefficients are also

non-negative.

This way, for single link overlap we have proven that the

estimated availability is “conservative”, meaning that it is

never greater than the exact availability.

The next step is to find the maximal amount of the in-

accuracy. As both the real and the approximated connection

availability metrics (Equations (3) and (4)) are ≈ 1 values, the

quotient of the two metric is also approximately 1 or near to 1,
which does not express significantly the inaccuracy of the S-P

method. Hence, we define the divergence of the S-P method

as the quotient of the approximated and real unavailabilities:

DIVU =
UACC

USP

(9)

The difference of unavailabilities is the inverted difference

of availabilities. By transforming (5) we get:

UACC = USP − Diff . (10)

Substituting (10) into (9) results in

DIVU =
USP − Diff

USP

= 1 −
Diff

USP

. (11)

We already know that DIVU ≤ 1. Now we define a lower

bound for DIVU . We state that

DIVU ≥ 1 −
dxdy

dx + dy

(12)

and in the followings we will prove it.

Equation (12) is equivalent with

Diff

USP

≤
dxdy

dx + dy

, (13)

which can be transcribed into

Diff (dx + dy) ≤ USP dxdy (14)

AUdxdy(dx + dy) ≤ USP dxdy

AU(dx + dy) ≤ USP (15)

and relation (15) is confirmed by geometric representation of

USP . To prove it also mathematically, we introduce a lower

bound of USP .

A·y1

U·y2

U·x2A·x1

U

A U

A
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Fig. 2. Lower bound of USP

Figure 2 shows an area U inf
SP

U inf
SP = AUy2 + AUx2 = AU(x2 + y2), (16)

which is a part of USP , thus

U inf
SP < USP . (17)

Applying the inequalities dx ≤ x2, dy ≤ y2, we can write:

AU(dx + dy) ≤ AU(x2 + y2). (18)

Putting together (18), (16) and (17), respectively, we get

AU(dx + dy) ≤ AU(x2 + y2) = U inf
SP < USP , (19)

where we find exactly (15) at the left and the right end.

Therefore, (12) is also always true.

Putting together the lower and the upper bound estimations

we get

1 −
dxdy

dx + dy

≤ DIVU ≤ 1. (20)

We get rougher but simpler lower bound estimation by exploit-

ing that – analogously to the aggregate resistance of parallel

switched devices –
dxdy

dx+dy
≤ min(dx, dy) and min(dx, dy) ≤

min(x2, y2)

1 − min(x2, y2) ≤ DIVU ≤ 1. (21)

Recalling the meaning of x2 and y2, (21) formalizes that the

exact unavailability of the connection is not only lower but

also close to the approximated value: the deviation between the

exact and the approximated connection unavailability is never



worse than the unavailability of the more viable connection-

part (head or tail of the connection) in case the overlapping

component is down. And as the connection is protected, even

in cases like that, its availability is still high; the unavailability

is in order of magnitude of an unprotected link. Thus:

lim
∀e∈E:P (S(e)=1)→1

DIVU = 1, (22)

expressing that as the components are getting more and more

available, the approximation is getting the more accurate.

IV. MULTIPLE LINK OVERLAP

In case of multiple overlapping links we want to get answer

to the following questions:

• Is DIVU ≤ 1?
• Can we find a lower bound for DIVU similar to the single

link overlap scenario?

• we have proven that DIVU → 1 if all the

links are protected and the link availability → 1

(lim∀e:P (S(e)=1)→1 DIVU = 1). Where does DIVU

converge in case of multiple overlaps?
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Fig. 3. Visual representation of the inaccuracy of the S-P method in case of
double link overlap

We recall Fig. 1 and extend it first to double overlap scenario

(with overlapping edges eh∗ = et∗ and eh◦ = et◦). In Fig. 3

we see a general case with the following notation:

A1 = P (S(eh∗) = 1) = P (S(et∗) = 1) – the availability

metric of the first overlapping link.

U1 = P (S(eh∗) = 0) = P (S(et∗) = 0) – the unavailability

metric of the first overlapping link.

A2 = P (S(eh◦) = 1) = P (S(et◦) = 1) – the availability

metric of the second overlapping link.

U2 = P (S(eh◦) = 0) = P (S(et◦) = 0) – the unavailability

metric of the second overlapping link.

x1 = P (S(connH
i ) = 0|S(eh∗) = 1, S(eh◦) = 1).

x2 = P (S(connH
i ) = 0|S(eh∗) = 1, S(eh◦) = 0).

x3 = P (S(connH
i ) = 0|S(eh∗) = 0, S(eh◦) = 1).

x4 = P (S(connH
i ) = 0|S(eh∗) = 0, S(eh◦) = 0).

y1 = P (S(connT
i ) = 0|S(et∗) = 1, S(et◦) = 1).

y2 = P (S(connT
i ) = 0|S(et∗) = 1, S(et◦) = 0).

y3 = P (S(connT
i ) = 0|S(et∗) = 0, S(et◦) = 1).

y4 = P (S(connT
i ) = 0|S(et∗) = 0, S(et◦) = 0).

Additionally, for each i 6= j pair, we will denote

dxij = xi − xj , and

dyij = yi − yj .

Due to the monotonity assumption, the following inequities

are true regarding the x values:

x1 ≤ x2 ≤ x4; x1 ≤ x3 ≤ x4 and

y1 ≤ y2 ≤ y4; y1 ≤ y3 ≤ y4.

That inequities restrict the range of some d values:

i = 4 ∨ j = 1 ⇒ dxij ≥ 0 ∧ dyij ≥ 0.

Nevertheless, we must emphasize that we cannot state anything

concerning the signedness of dx32 and dy32! And this absence

makes the examination difficult.

First, we want to answer the question whether DIVU ≤ 1.
To do this, we have to collect the pieces of Diff ⊕ and Diff ⊖.

They are:

Diff
⊕ = D

⊕
1

+ D
⊕
2

+ D
⊕
3

+ D
⊕
4

+ D
⊕
5

+ D
⊕
6

= A1U2dy21 × A1A2(1 − x1) +

+ U1A2dy31 × A1A2(1 − x1) +

+ U1U2dy41 × A1A2(1 − x1) +

+ U1A2dy32 × A1U2(1 − x2) +

+ U1U2dy42 × A1U2(1 − x2) +

+ U1U2dy43 × U1A2(1 − x3) (23)

Diff ⊖ = D
⊖
1

+ D
⊖
2

+ D
⊖
3

+ D
⊖
4

+ D
⊖
5

+ D
⊖
6

= A1A2dy21 × A1U2(1 − x2) +

+ A1A2dy31 × U1A2(1 − x3) +

+ A1A2dy41 × U1U2(1 − x4) +

+ A1U2dy32 × U1A2(1 − x3) +

+ A1U2dy42 × U1U2(1 − x4) +

+ U1A2dy43 × U1U2(1 − x4) (24)



Putting (23) and (24) together and replacing (1−xi)− (1−
xj) by dxji we get:

Diff = Diff ⊕ − Diff ⊖ =

= A2
1A2U2dy21dx21 + A1U1A

2
2dy31dx31 +

+ A1U1A2U2(dy41dx41 + dy32dx32) +

+ A1U1U
2
2 dy42dx42 + U2

1 A2U2dy43dx43(25)

Recalling (9) stating that

DIVU =
UACC

USP

= 1 −
Diff

USP

,

we can prove that DIVU ≤ 1 by proving that 0 ≤ Diff .

The only member of (25) which is not evidently non-

negative is A1U1A2U2(dy41dx41 + dy32dx32), since both dy32

and dx32 may be negative. Fortunately, for the absolute

values of the differences, the relations |dy41| ≥ |dy32| and
|dx41| ≥ |dx32| are true. That way

dy41dx41 + dy32dx32 ≥ dy41dx41 − |dy32dx32| ≥ 0.

This means that DIVU ≤ 1 even in case of multiple link

overlaps. In other words, the S-Pmethod does not overestimate

the connection availability.

The next question is how much is the positive divergence of

USP . We can transform the task of defining a lower bound of

DIVU into the task of defining an upper bound of Diff
USP

. We

approximate USP with U inf
SP which is not greater than USP .

Diff

USP

≤
Diff

U inf
SP

(26)

Figure 3 helps us to extract U inf
SP :

U inf
SP =A2

1A2U2(x2 + y2) + A1U1A
2
2(x3 + y3)+

+A1U1A2U2(max(x3, y2) + max(y3, x2) + x4 + y4)+

+A1U1U
2
2 (x4 + y4) + U2

1 A2U2(x4 + y4) (27)

Note that, opposed to the annotated area the figure, we use

max(x3, y2) instead of x3 (and max(y3, x2) instead of y3) to

maximize U inf
SP when set against the Diff metric.

To be able to compare with Diff we introduce U inf∗
SP ≤ U inf

SP

as

U inf∗
SP =A2

1A2U2(dx21 + dy21) + A1U1A
2
2(dx31 + dy31)+

+A1U1A2U2(

max(x3, y2) + max(y3, x2) + dx41 + dy41)+

+A1U1U
2
2 (dx42 + dy42) + U2

1 A2U2(dx43 + dy43)
(28)

Now, first we will give an evident lower bound estimation:

1

2
≦ DIVU (29)

which can be transformed into

Diff

USP

≦
1

2
(30)

2 · Diff ≦ USP . (31)

In (31) we can find for each member of Diff the corresponding

member in U inf∗
SP so that (e.g., for the first member):

2 · A2
1A2U2dy21dx21 ≦ A2

1A2U2(dx21 + dy21)

dy21dx21 + dy21dx21 ≦ dx21 + dy21

0 ≤ dx21(1 − dy21) + dy21(1 − dx21),
(32)

where in the last line all the members on the right side are

non-negative, for that reason (32) is always true.

Note that in (28) we still employ max(x3, y2) and

max(y3, x2). The relation of the corresponding Diff and USP

parts to be proven is:

2 · A1U1A2U2dy32dx32 ≦ A1U1A2U2(

max(x3, y2) + max(y3, x2))

2 · dy32dx32 ≦ max(x3, y2) + max(y3, x2) (33)

This relation is evidently true if one of dy32 and dx32 is

negative, since the left hand side of the relation will be less

than zero. If dy32, dx32 ≥ 0, we substitute dy32 + dx32 ≤
x3 + y3 ≤ max(x3, y2) + max(y3, x2) on the right side and

apply (32) as regular, otherwise, if dy32, dx32 ≤ 0, meaning

that y3 ≤ y2 and x3 ≤ x2, we can use the |dy32| + |dx32| ≤
y2+x2 ≤ max(x3, y2)+max(y3, x2) substitution on the right

side of the relation. Finally we get

2 · dy32dx32 ≤ |dy32| + |dx32|

which relation is valid. That way we have proven that (31) is

valid implying that the original assumption in (29) was right.

We can achieve, however, even a much closer lower bound

estimation if we define a limit onto the d values:

∀i, j : |dxij |, |dyij | < ε. (34)

If (34) is true, the lower bound is

DIVU ≥ 1 −
1

2
ε (35)

because after similar extraction as before,

Diff

USP

≦
ε

2
2 · Diff ≦ ε · USP ,

instead of (32) we will get now ordered pairs like this:

2 · A2
1A2U2dy21dx21 ≦ εA2

1A2U2(dx21 + dy21)

dy21dx21 + dy21dx21 ≦ ε(dx21 + dy21)

0 ≤ dx21(ε − dy21) + dy21(ε − dx21),
(36)

where the members on the right side are still non-negative.

However, there are cases when the conditional unavail-

abilities do not converge to 0. In those cases neither DIVU

will converge to 0. To analyze the convergence of DIVU we

examined some scenarios.



(a) No overlapping
at all

(b) Overlapping
backup links

(c) Mixed overlapping:
default with backup

(d) Mixed and backup
overlapping

(e) Mutual default link
overlapping, 3 link long cy-
cles

(f) Mutual default link
overlapping, 4 link long
cycles

(g) Mutual default link
overlapping, 6 link long cy-
cles

Fig. 4. Different link protection overlap scenarios

V. ILLUSTRATIVE EXAMPLES

Figure 4 depicts seven basic scenarios. In each example the

connection is 10 hop long and within a connection the links

– or in the last three scenarios the link pairs – of the default

path are protected in the same manner. The figures show the

neighboring default links with their protection (dashed lines)

and the protection overlaps. As we reflect on them in the

calculations, we introduce the following additional notation

for the components:

wr
i is the ith link on the default path,

Br
i is the set protection path of wr

i , consisting of

pr
i,j links.

εu is the order of magnitude of the link unavailabilities:

∀e ∈ E : c1 · εu < U(e) < c2 · εu. Note that

unprotected link chains inherit this order of magnitude

– e.g., U(Br
i ) =

∏

j U(pr
i,j) = O(εu).

The simulations carried out on the examples to define the

value of DIVU assumed that each link in the network has the

same availability metric (c1 = c2). The results are shown in

Fig. 5.

Scenario (a) does not have any overlapping links at all,

scenario (b) contains only backup link overlapping. In these

basic examples the conditional unavailabilities (x and y values)

converge to 0, this way DIVU → 1.
In scenarios (c) and (d) the protection of wr

i leads over

wr
i+1: pr

i,1 = wr
i+1 = eh∗ ; in (d) even pr

i,3 = pr
i+1,4 = eh◦ .

In this case if both commonly used links are down, the

connection, more closely the connection part connT
i , becomes

unavailable. This is expressed by the coefficient y4 = 1.
y4 = 1 implies that dy41, dy42, dy43 → 1, which means that

there cannot be found any ε < 1 for DIVU , hereby the lower

bound for the deviation is 1
2 ≤ DIVU .

Still, DIVU converges to 1. And the reason for this be-

haviour is the following: all the remaining conditional prob-

abilities of xi and yj for i ∈ {1, 2, 3, 4} and j ∈ {1, 2, 3}(!)
will converge to 0, since they refer to states probabilities

of connH or connT , when either the working path or the

protection path (or both) are available. All these cases imply

a conditional unavailability of order εu: xi, yj ≤ c3 · εu for

i ∈ {1, 2, 3, 4}, j ∈ {1, 2, 3}. This upper boundary (c3 · εu) is

inherited also by the remaining d values – all except for the

previously mentioned dy41, dy42, dy43.

Without the loss of generality, but for the sake of simple

calculations, we assume that c2 < c3. This way, substituting

c3 · ε values into Eq. (25) we get that Diff < 6 · c3
3 · ε3.

Whereas – after applying the lower bound of USP > U1U2y4

taken from Fig. 3 –, USP > c2
1 · ε

2. Thus the quotient of Diff

and USP is

Diff

USP

<
6 · c3

3 · ε
3

c2
1 · ε

2
< 6 · c3

3 · c
−2
1 · ε,

which also converges to 0. The simulation results in Fig. 5

confirm this reasoning.

Scenarios (e), (f) and (g) are more complicated than the for-

mer ones as the backup paths of wr
i and wr

i+1 mutually overlap

the default link of each other (wr
i = eh∗ and wr

i+1 = eh◦ ).

The question is where do their DIVU values converge. On

the one hand, we can observe that if both overlapped links are

down, the connection, precisiously said, the half-connections

connH
i and connT

i become unavailable (x4 = y4 = 1). On the

other hand, however, if the default path is available we do not

care about the state of the backup path (in case of S(eh∗) = 1
we use xd = x1 = x2 = UACC (connH

i−1) and in case of

S(et◦) = 1 we use yd = y1 = y3 = UACC (connT
i+1)). These

values were easy to derive.

The remaining probabilities, i.e., when the backup paths are

only available, are somewhat more complicated to evaluate.

Now we introduce the synonyms xb = x3 and yb = y2 to

denote these backup unavailabilities.

Both xd and yd are O(ε2), since the connection unavail-

ability depends in these cases only on remaining connection

segments connH
i−1 and connT

i+1 , and these segments are single

protected resulting in unavailability of O(ε2
u). For xb and yb

the connection segments contain an unprotected link chain

– practically, the backup path is operational and it is not

protected – thus they are O(ε).

Knowing that USP is O(ε2), we want to define rather a

more expressive metric that converges to a constant non-zero

value, i.e., is of order USP

ε2 :

lim
ε→0

USP

U1U2
= lim

ε→0

A1U2yb + U1U2 + U1A2xb + U1U2

U1U2
+

+
(A1U2yb + U1U2) · (U1A2xb + U1U2)

U1U2

= 2 +
U2yb + U1xb

U1U2

= 2 +
yb

U1
+

xb

U2
. (37)

Regarding the Diff metric our starting point is Eq. (25).

We already showed that dx4i and dy4i values converge to 1,

whereas the other d values are O(εn) where n is 1 or higher.

This way there will remain only one member of the sum Diff

which is O(ε2) making the limit value calculation easy for the
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following expression:

lim
ε→0

Diff

U1U2
= lim

ε→0

U1U2dx41dy41

U1U2
+ ε · rest

= lim
ε→0

dx41dy41

= 1. (38)

Putting (37) and (38) together, fiinally we get that

lim
ε→0

DIVU = 1 −
1

2 + yb

U1

+ xb

U2

. (39)

The lines corresponding to the last three scenarios in Fig.

5 confirm these calculations: revoking that U1 ≈ U2 ≈ εu,

in scenario (e) the cycles are 3 link long, this way yb ≈ U1

and xb ≈ U2. DIVU will converge to 1 − 1/(2 + 1 + 1) =
1 − 1/4 = 3/4. In scenario (f) the cycles are 4 link long,

this way yb ≈ 2U1 and xb ≈ 2U2. DIVU will converge to

1 − 1/(2 + 2 + 2) = 1 − 1/6 = 5/6. Finally, in scenario (g)

the cycles are 6 link long, this way yb ≈ 4U1 and xb ≈ 4U2.

DIVU will converge to 1 − 1/(2 + 4 + 4) = 1 − 1/10 = 0.9.

VI. CONCLUSION AND APPLICATION

In this paper we have examined the accuracy of the Serial-

Parallel aggregated availability calculation method. In case the

failure states of the network components in the default and

backup paths are independent, the S-P method is accurate.

However, overlapping components, e.g., network links mem-

ber of multiple link/segment protection paths, the calculation

“cheats”. Using geometric representation of probability space

we have examined single and multiple link overlaps. We have

proven that

• the accurate unavailability of a connection (UACC ) is

always lower than the unavailability approximated by the

serial-parallel method (USP );

• there can be defined lower bounds of the divergence

expressed by DIVU = UACC/USP :

DIVU ≥











1 − min(dx, dy), for single link overlap

1 − 1
2ε, for dual (or more) link

overlaps and ∀dxij , dyij : ε ≥ dxij , dyij

• By increasing the link availability metric in the network,

i.e., ∀e : P (S(e) = 0) ≤ ε, the divergence of the calcu-

lated and the accurate connection unavailability converges

to a defined value:

lim
ε→0

DIVU =































1, if there are no mutual

working link overlaps

1 − 1
2+

yb
U1

+
xb
U2

, if the protections of neigh-

boring working links mutu-

ally overlap each other

The presented theoretical result can be applied in several

situations. For example, the different protection alternatives

of the same connection can be partially ranked by their

availability, as long as difference between the results of the S-P

approximation are higher than the worst case inaccuracy of the

S-P method. We achieved further applicability in developing

most available path searching algorithm for link-protected

(e.g., p-cycle-protected) connections. With the help of the S-P

approximation and knowing the upper bound of its divergence,

we can find a metric which is higher than the real availability

metric. In our application we use that metric as hint within an

A∗-algorithm.
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