
 Elsevier Editorial System(tm) for Swarm and Evolutionary Computation
 Manuscript Draft

Manuscript Number:

Title: Scalability Properties of Multi-Threaded Bacterial Iterated Greedy Heuristics Applied for the
Permutation Flow Shop Problem

Article Type: Regular Paper

Keywords: Bacterial methods, Memetic algorithms, Hybrid Iterated Greedy techniques, Combinatorial
optimization, Permutation Flow Shop Problem

Corresponding Author: Mr. Krisztian Balazs,

Corresponding Author's Institution: Budapest University of Technology and Economics

First Author: Krisztian Balazs

Order of Authors: Krisztian Balazs; Pal Pusztai; Zoltan Horvath; Laszlo T Koczy

Abstract: This paper analyzes the improvement in the efficiency of systems using Multi-Threaded
Bacterial Iterated Greedy (MBIG) techniques, when the number of parallel processing threads are
scaled.
The different variants of MBIG are recently proposed approaches for combining Iterated Greedy
techniques, as state-of-the-art methods, with bacterial evolutionary algorithms based on a hybrid
technique involving the Multi-Threaded Iterated Greedy heuristic and a Genetic Algorithm based
memetic technique in order to efficiently solve the Permutation Flow Shop Problem on parallel
computing architectures.

In our present work the MBIG variants have been executed involving various number of processing
threads in order to examine the scalability of the approaches. The simulation runs have been carried
out on instances from the well-known Taillard's benchmark problem set.
The scalability is then evaluated by comparing the results to each other and to the results given by the
virtually parallelized implementation of the techniques discussed in our preceding paper.

Suggested Reviewers: Ruben Ruiz
rruiz@eio.upv.com

Thomas Stutzle
stuetzle@ulb.ac.be

Opposed Reviewers:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Scalability Properties of Multi-Threaded Bacterial

Iterated Greedy Heuristics Applied for the Permutation

Flow Shop Problem

Krisztián Balázsa, Pál Pusztaib, Zoltán Horváthb, László T. Kóczya,c

aDepartment of Telecommunications and Media Informatics Budapest University of
Technology and Economics

Magyar tudósok körútja 2. Budapest, H-1117, Hungary
Email: {balazs, koczy}@tmit.bme.hu

bDepartment of Mathematics and Computational Sciences Széchenyi István University
Egyetem tér 1. Győr, H-9026, Hungary

Email: {pusztai, horvathz}@sze.hu
cDepartment of Automation Széchenyi István University

Egyetem tér 1. Győr, H-9026, Hungary
Email: koczy@sze.hu

Abstract

This paper analyzes the improvement in the efficiency of systems using Multi-
Threaded Bacterial Iterated Greedy (MBIG) techniques, when the number
of parallel processing threads are scaled. The different variants of MBIG are
recently proposed approaches for combining Iterated Greedy techniques, as
state-of-the-art methods, with bacterial evolutionary algorithms based on a
hybrid technique involving the Multi-Threaded Iterated Greedy heuristic and
a Genetic Algorithm based memetic technique in order to efficiently solve the
Permutation Flow Shop Problem on parallel computing architectures.

In our present work the MBIG variants have been executed involving
various number of processing threads in order to examine the scalability of
the approaches. The simulation runs have been carried out on instances from
the well-known Taillard’s benchmark problem set. The scalability is then
evaluated by comparing the results to each other and to the results given by
the virtually parallelized implementation of the techniques discussed in our
preceding paper.

Keywords: Bacterial methods, Memetic algorithms, Hybrid Iterated
Greedy techniques, Combinatorial optimization, Permutation Flow Shop
Problem

Preprint submitted to Swarm and Evolutionary Computation August 28, 2013

balazs_et_al.pdf
Click here to view linked References

http://ees.elsevier.com/swevo/viewRCResults.aspx?pdf=1&docID=725&rev=0&fileID=10987&msid={A4C8AEBC-6A3A-42FA-91C3-1DF10FEB3819}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1. Introduction

One of the most intensively studied combinatorial optimization problems
is the Permutation Flow Shop Problem (PFSP) (Johnson, 1954). In this
problem there are given n jobs and m machines. All the jobs should be
processed by all the machines one after another. The machines are deployed
in a line and a machine can handle one single job at once. That is, the process
of the jobs is pipeline-like. There is also given an n×m-size processing time
matrix defining the necessary amount of time a job has to stay on a machine,
for each job-machine pair. A job can be processed on a machine only if the
machine is free (the preceding job has finished on the machine) and the job
has already processed on the preceding machine.

The task is to find a permutation (an order) of the jobs, in case of which
the total processing time of all the jobs on all the machines (i.e. the so called
makespan) is minimal.

This problem is known to be NP-hard (Kan, 1976), thus there are no
efficient algorithms to solve this task (and there is not much hope to find
one). It means that every method guaranteeing optimal solutions has im-
practically long computational time for even moderate problem sizes. Hence
only heuristics resulting in so called quasi-optimal solutions are viable. In
the past few decades a number of such heuristics are invented and published
(e.g. (Taillard, 1990), (Juan et al., 2010), (Horváth et al., 2011)).

Since due to the nature of the PFSP problem these heuristics cannot
be evaluated analytically, their evaluation and their comparison to other
techniques can be made experimentally, i.e. based on results of simulation
runs carried out on standard reference tasks, called benchmark problems.
Several such comparisons have been made involving a large part of the so
far proposed methods (e.g. (Taillard, 1990), (Juan et al., 2010), (Horváth
et al., 2011)). These comparative studies are mostly based on the well-known
Taillard’s benchmark problem set (Taillard, 1993).

In one of our previous work (Balázs et al., 2012a) a uniform approach
was proposed for applying various types of chromosome based evolutionary
algorithms for the PFSP problem. The proposal included two ways for indi-
vidual representation and the corresponding evolutionary operators built up
from three so called atomic operators.

Another previous work (Balázs et al., 2012b) proposed approaches for

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

combining the Iterated Greedy techniques as state-of-the-art methods with
bacterial evolutionary algorithms to efficiently solve the Permutation Flow
Shop Problem. The best resulting Bacterial Iterated Greedy method clearly
outperformed the Iterated Greedy heuristic.

Studies about parallel Iterated Greedy techniques involving Memetic Al-
gorithm (e.g. (Ravetti et al., 2010)) showed that in case of multi-threaded
Iterated Greedy methods the combination with evolutionary algorithms was
able to improve the performance of simple multi-threaded Iterated Greedy
algorithms.

These results motivated the idea that it might be also worth to try to
replace the genetic algorithm based memetic method in (Ravetti et al., 2010)
with the Bacterial Memetic Algorithm, which appears to be more effective for
the PFSP task (cf. (Balázs et al., 2012a)) and which shows better properties
in other fields of optimization, too (see e.g. (Balázs et al., 2010b), (Balázs
et al., 2010a)).

Therefore, our preceding paper (Balázs et al., 2012c) proposed approaches
for combining multi-threaded Iterated Greedy techniques as state-of-the-art
methods with bacterial evolutionary algorithms to efficiently solve the Per-
mutation Flow Shop Problem on parallel computing architectures.

In our present work the MBIG variants have been executed involving
various number of processing threads in order to examine the scalability of
the approaches. The simulation runs have been carried out on a series of
data from the well-known Taillard’s benchmark problem set. The scalability
is then evaluated by comparing the results to each other and to the results
given by the virtually parallelized implementation of the techniques discussed
in our preceding paper.

The next section gives a formal definition to the PFSP problem. Within
this, the search space and the makespan function as the objective function
are defined. Then, the third section briefly describes the bacterial evolution-
ary and memetic techniques being combined with the iterated greedy algo-
rithms, furthermore it gives a brief overview of the single and multi-threaded
Iterated Greedy methods, since these techniques appear in the hybrid ap-
proaches. The basic concept and the main steps of the algorithms are also
presented. The new combination approaches for multi-threaded heuristics are
also described in section three. The experimental results and the observed
characteristics are presented in section five. Finally, in the last section our
work is summarized and some conclusions are drawn.

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2. The Permutation Flow Shop Problem

As it was described in the Introduction, in this problem there is given the
number of jobs n, the number of machines m and an n ×m-size processing
time matrix P defining the necessary amount of time a job has to stay on a
machine, for each job-machine pair. That is, the elements of the matrix are
positive and an element pi,j denotes the time the ith job stays on the jth
machine.

All the jobs should be worked by all the machines one after another. The
machines are deployed in a line and each machine can handle one single job
at once. That is, the processing of the jobs is pipeline-like. A job can be
processed on a machine only if the machine is free (the preceding job has
finished on the machine) and the job has already processed on the preceding
machine.

The task is to find a permutation (a sequence) of the jobs, in case of
which the total processing time of all the jobs on all the machines (i.e. the
so called makespan) is minimal.

For example, if there are three jobs the permutation (2, 3, 1) denotes the
case when the second job goes first, the third goes next, and finally the first
goes last.

Clearly, the search space is the set of the n-order permutations Sn, and
the objective function is defined over this search space and its range is the
set of positive numbers.

Formally, the objective or makespan function f can be defined as follows
(see e.g. (Johnson, 1954)).

f : Sn 7→ R+

f(σ) = t(n,m, σ)

t(0, j, σ) ≡ 0

t(i, 0, σ) ≡ 0

t(i, j, σ) = max(t(i, j − 1, σ), t(i− 1, j, σ)) + pσ(i),j (1)

The task is to find a permutation for which the makespan is optimal
(i.e. minimal).

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3. Overview of the techniques applied

The purpose of this section is to enumerate and shortly describe the tech-
niques applied in the establishment of the hybrid algorithms. Thus, in the
first part of this section after a brief introduction to chromosome based evo-
lutionary techniques, the skeleton of the Genetic and Bacterial Evolutionary
Algorithms will be presented followed by the idea of memetic algorithms.
Then the uniform approach for applying chromosome based techniques, like
the Bacterial Memetic Algorithm, to the PFSP problem is described, which
is proposed and deeply discussed in (Balázs et al., 2012a). This includes
the description of both the encoding methods and the evolutionary oper-
ators applied in this research. In the second part of the section the well
known Iterated Greedy method together with its bacterial hybridization and
multi-threaded variant will be presented shortly.

Due to space limitations the approaches will only be outlined very briefly.
For further details the reader should refer to the cited literature.

3.1. Chromosome based evolutionary algorithms

A famous, frequently studied and applied family of iterative stochastic op-
timization techniques is called chromosome based evolutionary algorithms.
These methods, like the Genetic Algorithm (GA) (Holland, 1992) or the Bac-
terial Evolutionary Algorithm (BEA) (Nawa and Furuhashi, 1999), imitate
the abstract model of the evolution of populations observed in the nature.
Their aim is to change the individuals in the population (set of individuals)
by the evolutionary operators to obtain better and better ones.

3.1.1. Genetic Algorithm

One of the most (if not the most) widely applied chromosome based
evolutionary techniques is the Genetic Algorithm (GA) (Holland, 1992). Due
to its notoriety its further description is omitted here.

3.1.2. Bacterial Evolutionary Algorithm

Compared to GA, a somewhat different evolutionary technique is called
Bacterial Evolutionary Algorithm (BEA) (Nawa and Furuhashi, 1999). BEA
has proved a rather efficient method among chromosome based techniques
for various optimization tasks, including the PFSP problem (cf. e.g. (Balázs
et al., 2010b), (Balázs et al., 2010a), (Balázs et al., 2012a)).

BEA comprises the following steps:

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1. Initialization

2. Bacterial mutation

3. Gene transfer

3.1.3. Memetic algorithms

The techniques causing minor modifications to the candidate solutions
iteration-by-iteration and thus exploring only the ‘neighborhood’ of particu-
lar elements of the search space are called local search methods.

After a proper amount of iterations, as a result of these minor modification
steps, the local search algorithms find the ‘nearest’ local minimum quite
accurately. However, these techniques are very sensible to the location of the
starting point. In order to find the global optimum, the starting point must
be located close enough to it, in the sense that no local optima separate the
two points.

Evolutionary computation techniques explore the whole objective func-
tion, because of their characteristic, so they find the global optimum, but
they approach it slowly, while local search based algorithms find only the
nearest local optimum, however, they converge to it faster.

Avoiding the disadvantages of the two different technique types, evolu-
tionary algorithms and local search methods may be combined (Moscato,
1989), for example, if in each iteration for each individual one or more local
search steps are applied. Expectedly, this way the advantages of both local
search and evolutionary techniques can be exploited: the local optima can
be found quite accurately on the whole objective function, i.e. the global
optimum can be obtained quite accurately.

3.1.4. Encoding methods

In case of the PSFP problem two types of individual representation (i.e. two
encoding methods) are proposed in (Balázs et al., 2012a) for the chromosome
based evolutionary techniques, among them for the bacterial algorithms.

The first one is based on the permutations themselves, thus the evolu-
tionary operators modify the elements of the permutations directly.

The second encoding method is an indirect, real value based encoding
approach, which is an obvious extension of those representations applied for
numerical optimization problems. Although, the operators modify the values
of real valued vectors (arrays) — since the objective function is defined over
permutations, the chromosomes represent permutations actually — there is

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

a need to convert the real valued vectors to permutations somehow. This
can be done by ordering the genes according to the values they have.

There seems to be an unnecessary ‘overhead’ in this encoding technique,
because one could say that the chromosome should hold the permutation and
the operators should modify the permutations directly, instead of changing
a real valued vector and the permutation via this vector.

However, despite the computational overhead, this encoding manner turned
out to be useful in our recent research (Balázs et al., 2012a). Hence the bac-
terial techniques applied in our present work are based on the real value
based encoding method, and hereafter only this representation type will be
considered in this paper.

3.1.5. Evolutionary operators

The different evolutionary operators used by the algorithms investigated
in (Balázs et al., 2012a) are derived from three ‘atomic operators’: mutation,
gene transfer and local search.

In bacterial methods bacterial mutation can be obviously constructed by
using the atomic operator mutation as well as gene transfer can be made by
using the atomic operator gene transfer.

The atomic operator local search is exactly the same as the local search
operator in case of memetic techniques.

The short description of atomic operators is as follows:

• Mutation:

When a gene is mutated, it is set to a random real value. Thus, the
permutation represented by the chromosome changes, because the order
of the real values in the chromosome changes.

• Gene transfer:

The real value of the selected gene in the target individual is set to the
real value of the corresponding gene of the source individual.

• Local search:

One iteration cycle of the local search is the following. First of all,
a random order of the elements of the permutation from the first to
the last but one is selected. Then, following this order the neighboring
elements according to the permutation represented by the chromosome
are tried to change their values with each other so that if according

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

to the random order the current element is the ith, then it is tried to
change its value with the (i + 1)th. After each change between the
neighbors if the resulting permutation is better (i.e. it has a higher
fitness value), the change is kept. Otherwise, the change is rolled back.

3.2. Iterated Greedy methods

The Iterated Greedy (IG) technique (Ruiz and Stützle, 2007) is a very
simple and intuitive but rather efficient heuristic for the PFSP problem. The
basic method will be described below followed by the bacterial hybrid version
and the multi-threaded variant.

3.2.1. The Iterated Greedy technique

Basically, the Iterated Greedy (IG) technique (Ruiz and Stützle, 2007)
comprises four steps:

1. Initialization:
An initial permutation is created by using the deterministic NEH heuris-
tic (Nawaz et al., 1983) (which is not described in this paper). This
permutation is stored as best.

2. Destruction phase:
A predefined number of jobs are selected randomly, and they are re-
moved from the permutation.

3. Construction phase:
The removed jobs are reinserted into the destructed permutation to
those places in case of which the partial permutations have the lowest
makespan values.

4. Acceptance check:
If the newly created permutation is better than the original one, it is
kept. If it is better than the ever best, it is stored as the new best solu-
tion. If the newly created permutation is worse than the original one,
it may also be kept with a probability depending on a so-called ‘tem-
perature parameter’ and on the difference between the makespan value
of the original and the new solution. Otherwise the new permutation
is ignored.

The main iteration loop of the algorithm contains steps 2 – 4. The al-
gorithm stops, if at the end of an iteration one of the termination criteria
fulfills (iteration limit reached, time limit exceeded, etc.). After termination
the stored best permutation represents the quasi-optimal solution.

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Local search steps can also be applied within the Iterated Greedy method.
Usually, in this case the so called Iterative Insertion Improvement algorithm
(III) (Ruiz and Stützle, 2007) is used between steps 3 and 4. During one iter-
ation of this local search a destruction and a construction phase take place for
one single job at once, but this is performed for each job in the permutation.
The local search iterates until the last iteration shows no improvement.

3.2.2. The Bacterial Iterated Greedy algorithm

In our recent work (Balázs et al., 2012b) a number of hybrid bacterial
iterated greedy variants were established, however in this paper only the
best one will be described and involved in the multi-threaded approaches.

In the (best established) Bacterial Iterated Greedy (BIG) algorithm the
above discussed Bacterial Memetic Algorithm is embedded into the Iterated
Greedy heuristic. Since the Iterated Greedy method considers only one can-
didate solution at once, whereas the bacterial algorithms maintain a whole
population of the permutations, at the embedding point a number of indi-
viduals must be derived from one candidate solution. This means that the
embedding point must be such a point in the base algorithm, where the base
heuristic can easily run on side-roads, i.e. it can fork to slightly different
ways.

This point is the beginning of the destruction phase, where the jobs to
remove are selected randomly, because different random numbers cause dif-
ferent processions of the destruction resulting different candidate solutions
forming the population. Thus, the population of the bacterial algorithm
is created by the multiple execution of the destruction. Apparently, after
each destruction the corresponding construction phase follows in order to
have valid permutations before the embedded bacterial heuristic starts. Here
comes the main loop of the embedded technique, which iterates a predefined
number of times on the created population. After that, the iterated greedy
method continues with the acceptance check immediately involving the best
individual from the bacterial population.

Thus, the hybrid algorithm comprises the following steps:

1. Initialization

2. Multiple destruction phase

3. Construction phase

4. Embedded bacterial algorithm

(a) Bacterial mutation

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(b) Gene transfer
(c) Local search

5. The best individual is selected from the bacterial population for further
usage and the rest of the population is disregarded.

6. Acceptance check

The main iteration loop of the algorithm contains steps 2 – 7. The al-
gorithm stops, if at the end of an iteration one of the termination criteria
fulfills (iteration limit reached, time limit exceeded, etc.). After termination
the stored best permutation represents the quasi-optimal solution.

3.2.3. Multi-threaded Iterated Greedy techniques

Considering multi-processor computer systems parallel Iterated Greedy
algorithm types running on multiple threads were also invented.

A simple parallel extension of the IG method is the Multi-threaded Iter-
ated Greedy (MIG) technique (Ravetti et al., 2010). In this case an instance
of the IG algorithm is running on each thread until the termination condition
is fulfilled. Then, the best one among the permutations given by the threads
will be the quasi-optimal solution. The steps of MIG are the following:

1. Initialization of the parallel threads:
An initial permutation is created for each thread by using the deter-
ministic NEH heuristic (Nawaz et al., 1983).

2. Parallel execution of iterated greedy methods:
Every thread executes an iterated greedy technique until a termination
condition is fulfilled.

3. Selection of the best candidate solution:
The resulting permutations given by the parallel executed methods are
collected and the best one is selected as the result of the optimization
process.

A more sophisticated parallel extension of the IG method is a combination
of a genetic algorithm based memetic technique and the MIG algorithm. This
is referred to as MA+MIG (Memetic Algorithm + Multi-threaded Iterated
Greedy) method by the inventors (Ravetti et al., 2010). In this heuristic
one thread is executing a genetic algorithm based memetic technique, while
the others are running the IG method. During the optimization process the
memetic algorithm and the IG threads are communicating with each other
via a migration pool, where a larger number of individuals take place. This

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

way, candidate solutions are continuously migrating between the threads.
The steps of MA+MIG are the following:

1. Initialization of the parallel threads:
The migration pool is filled with individuals partly by using initial
heuristics and partly by generating random permutations. The threads
take their initial candidate solutions from this pool.

2. Parallel execution:
A genetic algorithm based memetic technique is running on one thread,
while each other thread is executing an iterated greedy technique con-
currently until a termination condition is fulfilled. During this process
in case of the fulfillment of certain conditions, the threads exchange
(migrate) their candidate solutions by using the migration pool.

3. Selection of the best candidate solution:
The resulting permutations given by the parallel executed methods are
collected and the best one is selected as the result of the optimization
process.

3.3. Hybrid multi-threaded bacterial approaches

Unlike in the single threaded case, if multiple threads are considered,
i.e. there are more than one algorithms running parallel, even if the original
techniques are executed on every thread, a hybrid method can be obtained by
running different methods on different threads. An example to such a hybrid
multi-threaded heuristic is the above described MA+MIG method, where
the original algorithms are running on all the threads, mostly IG techniques
parallel, but there is one exceptional thread, where the genetic algorithm
based memetic method is executed.

Our preceding paper proposed similar (but hopefully better) hybrid tech-
niques by exchanging the heuristics on the threads (Balázs et al., 2012c).
Considering our recent work on chromosome based evolutionary methods
(Balázs et al., 2012a) and the previously discussed single-threaded techniques
three hybrid bacterial approaches are proposed for multi-threaded PFSP op-
timization. They are originated from the MA+MIG method by making the
following changes, respectively:

1. The genetic algorithm based memetic heuristic is exchanged with the
bacterial memetic technique and the iterated greedy threads are left
untouched (BMA+MIG).

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2. The genetic algorithm based memetic thread is left untouched and the
iterated greedy method is exchanged with a hybrid single-threaded bac-
terial iterated greedy technique on every thread (MA+MBIG).

3. Both heuristics are exchanged, i.e. the bacterial memetic technique
is executed on one thread, while a hybrid single-threaded bacterial
iterated greedy method is applied on the other threads (BMA+MBIG).

During the optimization the candidate solutions migrate between the
threads via the migration pool and at the beginning of the optimization
process the threads are also initialized with the individuals from the pool.
The size of the migration pool equals to the sum of the size of the bacterial
population and the number of iterated greedy threads. Thus, the correspond-
ing individuals can be determined for every thread, which assignment is used
during the migration.

The migration between the threads and the pool occurs according to a
clock. When a certain amount of time elapsed after the last migration each
thread overwrites the individual(s) in the pool assigned to the algorithm
instance. Then, they take new permutations from the pool randomly. Al-
though, the threads take new individuals, they keep their best ever permuta-
tions. The time gap between migrations is a parameter of the multi-threaded
algorithm.

On the threads arbitrary single-threaded bacterial iterated greedy algo-
rithm can be applied.

The run of the Multi-Threaded Bacterial Iterated Greedy (MBIG) meth-
ods are illustrated in Figure 1.

4. Evaluation of the obtained techniques

Simulation runs were carried out in order to evaluate and to compare the
scalability of the recently proposed approaches and the established algorithms
on parallel computer architectures.

For this purpose, three problems (with identifiers ‘ta071’, ‘ta081’ and
‘ta101’) were applied from the well-known Taillard’s benchmark set (Tail-
lard, 1993). Exactly one problem from three different problem sizes, namely
100×10, 100×20 and 200×20 (“number of jobs × number of machines”).
They will be referred to as ‘easy’, ‘medium’ and ‘hard’ tasks, respectively.

In the simulations the parameters had the following values, because after
a number of test runs these values seemed to be the most suitable.

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 1: Illustration of the MBIG methods

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

In the bacterial algorithms the number of individuals in a generation was
8, the number of clones was 2 and 1 gene transfer was carried out in each
generation. In the iterated greedy methods 4 jobs were selected to remove in
each generation and the temperature parameter was 5 (see (Ruiz and Stützle,
2007)). The run of the embedded techniques took 3 iterations. The strength
parameter for the parameterized distributions was 0.99.

In case of all the algorithms for all benchmark problems 10 runs were
carried out. Then the mean of the obtained values were taken.

The means of the resulting values were collected in tables. In Table 1
and Table 2 next to the ‘Problem’ label the ‘ID’ rows show the identifiers
of the tasks in Taillard’s benchmark problem set (Taillard, 1993) and ‘Size’
denotes the size of the benchmark problem (in the form of “number of jobs
× number of machines”). The best known makespan values according to the
website of Taillard1 (which was last updated in 2005) are collected in rows
labeled by ‘B.k.m.v.’. ‘Time limit’ shows the length of the simulation runs in
seconds. The time limits were chosen according to an accepted formula (Ruiz
and Stützle, 2007): number of jobs × number of machines × 30 milliseconds.
Next to the algorithm labels the ‘Mean’ and ‘Std. dev.’ rows present the
mean and the standard deviation of the makespan values produced by the
techniques, respectively. ‘Rel. diff.’ shows the mean of the relative differences
of these makespan values compared to the known best ones:

1

10

10∑
i=1

(Resulti − Best known value)/(Best known value). (2)

4.1. Experimental results for the hybrid methods

From the results in Table 1, it can be observed that in case of each prob-
lem the real parallel versions produced lower makespan values than the one
applying virtual threads. In case of the easy problem among the real paral-
lel variants the scalability can be clearly seen, i.e. as the number of threads
involved are increased, the makespan as well as the relative difference values
decrease. However, for the other two (more difficult) tasks the scalability is
not so obvious, because in the results of the medium problem the 2-thread
version, whereas in case of the hard task the 8-thread variant breaks the ten-
dency of descending makespan values. The reason behind this phenomenon

1http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

can be the fact that during the predefined execution time the algorithms con-
verged to each other so much (notice that the maximal difference between
their relative difference values is 0.063% for the medium and hard problems
altogether), that the relatively big deviation of the results (cf. ‘Std. dev.’
values) can strongly affect these differences.

It can be observed form Table 2 that in this real parallel environment
in case of the easy problem the original MA+MIG method gave the best
makespan values, however, for the medium and hard tasks the recently pro-
posed BMA+MIG technique showed better performance (like in the virtual
parallel environment, see (Balázs et al., 2012c)).

Table 1: Results for the BMAMBIG technique with various number of threads

Problem

ID ta071 ta081 ta101
Size 100x10 100x20 200x20

B.k.m.v. 5770 6286 11294
Time limit 30 60 120

8 virtual threads
Mean 5810 6419 11490

Std. dev. 10.200 11.377 31.270
Rel. diff. 0.693% 2.116% 1.735%

2 threads
Mean 5809 6399 11485

Std. dev. 3.553 8.015 25.101
Rel. diff. 0.676% 1.798% 1.691%

4 threads
Mean 5808 6403 11481

Std. dev. 3.887 7.875 20.608
Rel. diff. 0.659% 1.861% 1.656%

8 threads
Mean 5801 6402 11486

Std. dev. 4.327 5.763 27.865
Rel. diff. 0.537% 1.845% 1.700%

5. Conclusions

In this paper the recently proposed Multi-Threaded Bacterial Iterated
Greedy (MBIG) techniques capable of solving the Permutation Flow Shop
Problem were analyzed from the point of view of scalability, i.e. the improve-
ment of their efficiency when more and more processing threads are applied
in the executing parallel computing architecture.

15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 2: Results produced by the different hybrid multi-threaded methods on 8 threads

Problem

ID ta071 ta081 ta101
Size 100x10 100x20 200x20

B.k.m.v. 5770 6286 11294
Time limit 30 60 120

BMA+MBIG
Mean 5802 6402 11486

Std. dev. 6.651 5.763 27.656
Rel. diff. 0.555% 1.845% 1.700%

BMA+MIG
Mean 5800 6397 11485

Std. dev. 7.945 13.214 25.171
Rel. diff. 0.520% 1.766% 1.691%

MA+MBIG
Mean 5798 6418 11488

Std. dev. 5.982 19.102 15.749
Rel. diff. 0.485% 2.100% 1.718%

MA+MIG
Mean 5795 6413 11486

Std. dev. 5.578 16.901 15.157
Rel. diff. 0.433% 2.020% 1.700%

The scalability was evaluated via simulation runs carried out on the well-
known Taillard’s benchmark problem set. The scalability was then evaluated
by comparing the results to each other and to the results given by the virtu-
ally parallelized implementation of the techniques discussed in our preceding
paper.

During the experimental analysis the scalability of the approaches could
be clearly observed in case of the 100×10 task, i.e. when the number of
processing threads were increased, the efficiency of the techniques improved.
However, for the more difficult problems the scalability is not so obvious,
because during the predefined execution time the algorithms converged to
each other so much, that the relatively big deviation of the results could
strongly affect these differences.

The three novel techniques proposed in our preceding paper (Balázs
et al., 2012c) was also compared to each other and to the original MA+MIG
method. Whereas the original algorithm gave better results for the 100×10
task, in case of the more difficult problems the recently proposed BMA+MIG
technique seemed to be the best.

Future work may aim at establishing more hybrid methods involving other
state-of-the-art optimization algorithms for the PFSP problem, including

16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

parallel multi-threaded methods as well, and to compare them with the ones
discussed in our recent and present works.

Acknowledgment

The research is supported by the National Development Agency and the
European Union within the frame of the project TÁMOP-4.2.2-08/1-2008-
0021 at the Széchenyi István University entitled “Simulation and Optimiza-
tion — basic research in numerical mathematics”, the National Scientific
Research Fund Grant OTKA K105529, a Széchenyi István University Main
Research Direction Grant and the Social Renewal Operation Programmes
TÁMOP-4.2.2 08/1-2008-0021 and 421 B.

References

Balázs, K., Botzheim, J., Kóczy, L. T., 2010a. Comparative analysis of inter-
polative and non-interpolative fuzzy rule based machine learning systems
applying various numerical optimization methods. In: World Congress on
Computational Intelligence, WCCI 2010. Barcelona, Spain, pp. 875–982.

Balázs, K., Botzheim, J., Kóczy, L. T., 2010b. Comparison of various evolu-
tionary and memetic algorithms. In: Proceedings of the International Sym-
posium on Integrated Uncertainty Management and Applications, IUM
2010. Ishikawa, Japan, pp. 431–442.

Balázs, K., Horváth, Z., Kóczy, L. T., 2012a. Different chromosome based
evolutionary approaches for the permutation flow shop problem. Acta Poly-
technica Hungarica 2 (2), 115–138.

Balázs, K., Horváth, Z., Kóczy, L. T., 2012b. Hybrid bacterial iterated greedy
heuristics for the permutation flow shop problem. In: World Congress on
Computational Intelligence, WCCI 2012. Brisbane, Australia, pp. 1–8.

Balázs, K., Horváth, Z., Kóczy, L. T., 2012c. Multi-threaded bacterial it-
erated greedy heuristics for the permutation flow shop problem. In: 13th
IEEE International Symposium on Computational Intelligence and Infor-
matics, CINTI 2012. Budapest, Hungary, pp. 63–66.

Holland, J. H., 1992. Adaption in Natural and Artificial Systems. The MIT
Press, Cambridge, Massachusetts.

17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Horváth, Z., Pusztai, P., Hajba, T., Kiss-Tóth, C., 2011. Mathematical meth-
ods and parallel codes for production line optimization. In: Factory Au-
tomation 2011 Conference. Győr, Hungary.

Johnson, S. M., 1954. Optimal two- and three-stage production schedules
with setup times included. Naval Research Logistics Quarterly 1, 61–68.

Juan, A., Guix, A., Ruiz, R., Fonseca, P., Adelantado, F., 2010. Using simu-
lation to provide alternative solutions to the flowshop sequencing problem.
In: 14th ASIM Dedicated Conf. on Simulation in Production and Logistic.
Karlsruhe, Germany, pp. 349–356.

Kan, A. H. G. R., 1976. Machine Scheduling Problems: Classification, Com-
plexity and Computations. Martinus Nijhoff, The Hague, The Netherlands.

Moscato, P., 1989. On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms. Tech. Rep. Caltech Concurrent
Computation Program, Report. 826, California Institute of Technology,
Pasadena, California, USA.

Nawa, N. E., Furuhashi, T., Oct. 1999. Fuzzy system parameters discovery
by bacterial evolutionary algorithm. IEEE Transactions on Fuzzy Systems
7 (5), 608–616.

Nawaz, M., Jr., E. E. E., Ham, I., 1983. A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem. OMEGA, The International
Journal of Management Science 11 (1), 91–95.

Ravetti, M. G., Riveros, C., Mendes, A., Resende, M. G. C., Pardalos, P. M.,
2010. Parallel hybrid heuristics for the permutation flow shop problem.
Research technical report, AT&T Labs.

Ruiz, R., Stützle, T., 2007. A simple and effective iterated greedy algorithm
for the permutation flowshop scheduling problem. European Journal of
Operational Research 177, 2033–2049.

Taillard, E., 1990. Some efficient heuristic methods for the flow shop sequenc-
ing problem. European Journal of Operational Research, 65–74.

Taillard, E., 1993. Benchmarks for basic scheduling problems. European
Journal of Operational Research 64 (2), 278–285.

18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

This is pdfTeX, Version 3.1415926-1.40.10 (Web2C 2009) (format=latex 2011.5.3) 28 AUG 2013 13:55
entering extended mode
 %&-line parsing enabled.
**balazs_et_al.tex
(./balazs_et_al.tex
LaTeX2e <2009/09/24>
Babel <v3.8l> and hyphenation patterns for english, usenglishmax, dumylang, noh
yphenation, german-x-2009-06-19, ngerman-x-2009-06-19, ancientgreek, ibycus, ar
abic, basque, bulgarian, catalan, pinyin, coptic, croatian, czech, danish, dutc
h, esperanto, estonian, farsi, finnish, french, galician, german, ngerman, mono
greek, greek, hungarian, icelandic, indonesian, interlingua, irish, italian, ku
rmanji, latin, latvian, lithuanian, mongolian, mongolian2a, bokmal, nynorsk, po
lish, portuguese, romanian, russian, sanskrit, serbian, slovak, slovenian, span
ish, swedish, turkish, ukenglish, ukrainian, uppersorbian, welsh, loaded.
(./elsarticle.cls
Document Class: elsarticle 2009/09/17, 1.20b: Elsevier Ltd
\@bls=\dimen102
(c:/texlive/2009/texmf-dist/tex/latex/base/article.cls
Document Class: article 2007/10/19 v1.4h Standard LaTeX document class
(c:/texlive/2009/texmf-dist/tex/latex/base/size12.clo
File: size12.clo 2007/10/19 v1.4h Standard LaTeX file (size option)
)
\c@part=\count79
\c@section=\count80
\c@subsection=\count81
\c@subsubsection=\count82
\c@paragraph=\count83
\c@subparagraph=\count84
\c@figure=\count85
\c@table=\count86
\abovecaptionskip=\skip41
\belowcaptionskip=\skip42
\bibindent=\dimen103
) (c:/texlive/2009/texmf-dist/tex/latex/graphics/graphicx.sty
Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
(c:/texlive/2009/texmf-dist/tex/latex/graphics/keyval.sty
Package: keyval 1999/03/16 v1.13 key=value parser (DPC)
\KV@toks@=\toks14
) (c:/texlive/2009/texmf-dist/tex/latex/graphics/graphics.sty
Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR)
(c:/texlive/2009/texmf-dist/tex/latex/graphics/trig.sty
Package: trig 1999/03/16 v1.09 sin cos tan (DPC)
) (c:/texlive/2009/texmf-dist/tex/latex/latexconfig/graphics.cfg
File: graphics.cfg 2009/08/28 v1.8 graphics configuration of TeX Live
)
Package graphics Info: Driver file: dvips.def on input line 91.
(c:/texlive/2009/texmf-dist/tex/latex/graphics/dvips.def
File: dvips.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR)
))
\Gin@req@height=\dimen104
\Gin@req@width=\dimen105
) (c:/texlive/2009/texmf-dist/tex/latex/psnfss/pifont.sty

balazs_et_al.tex
Click here to view linked References

http://ees.elsevier.com/swevo/viewRCResults.aspx?pdf=1&docID=725&rev=0&fileID=10988&msid={A4C8AEBC-6A3A-42FA-91C3-1DF10FEB3819}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Package: pifont 2005/04/12 PSNFSS-v9.2a Pi font support (SPQR)
LaTeX Font Info: Try loading font information for U+pzd on input line 63.
(c:/texlive/2009/texmf-dist/tex/latex/psnfss/upzd.fd
File: upzd.fd 2001/06/04 font definitions for U/pzd.
)
LaTeX Font Info: Try loading font information for U+psy on input line 64.
(c:/texlive/2009/texmf-dist/tex/latex/psnfss/upsy.fd
File: upsy.fd 2001/06/04 font definitions for U/psy.
))
\c@tnote=\count87
\c@fnote=\count88
\c@cnote=\count89
\c@ead=\count90
\c@author=\count91
\@eadauthor=\toks15
\c@affn=\count92
\absbox=\box26
\keybox=\box27
\Columnwidth=\dimen106
\space@left=\dimen107
\els@boxa=\box28
\els@boxb=\box29
\leftMargin=\dimen108
\@enLab=\toks16
\@sep=\skip43
\@@sep=\skip44
(./balazs_et_al.spl) (c:/texlive/2009/texmf-dist/tex/latex/natbib/natbib.sty
Package: natbib 2009/07/16 8.31 (PWD, AO)
\bibhang=\skip45
\bibsep=\skip46
LaTeX Info: Redefining \cite on input line 694.
\c@NAT@ctr=\count93
)
\splwrite=\write3
\openout3 = `balazs_et_al.spl'.

\appnamewidth=\dimen109
) (c:/texlive/2009/texmf-dist/tex/latex/amsfonts/amssymb.sty
Package: amssymb 2009/06/22 v3.00
(c:/texlive/2009/texmf-dist/tex/latex/amsfonts/amsfonts.sty
Package: amsfonts 2009/06/22 v3.00 Basic AMSFonts support
\@emptytoks=\toks17
\symAMSa=\mathgroup4
\symAMSb=\mathgroup5
LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
(Font) U/euf/m/n --> U/euf/b/n on input line 96.
)) (c:/texlive/2009/texmf-dist/tex/latex/multirow/multirow.sty
\bigstrutjot=\dimen110
) (c:/texlive/2009/texmf-dist/tex/latex/placeins/placeins.sty
Package: placeins 2005/04/18 v 2.2
) (c:/texlive/2009/texmf-dist/tex/latex/tools/multicol.sty
Package: multicol 2008/12/05 v1.6h multicolumn formatting (FMi)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

\c@tracingmulticols=\count94
\mult@box=\box30
\multicol@leftmargin=\dimen111
\c@unbalance=\count95
\c@collectmore=\count96
\doublecol@number=\count97
\multicoltolerance=\count98
\multicolpretolerance=\count99
\full@width=\dimen112
\page@free=\dimen113
\premulticols=\dimen114
\postmulticols=\dimen115
\multicolsep=\skip47
\multicolbaselineskip=\skip48
\partial@page=\box31
\last@line=\box32
\mult@rightbox=\box33
\mult@grightbox=\box34
\mult@gfirstbox=\box35
\mult@firstbox=\box36
\@tempa=\box37
\@tempa=\box38
\@tempa=\box39
\@tempa=\box40
\@tempa=\box41
\@tempa=\box42
\@tempa=\box43
\@tempa=\box44
\@tempa=\box45
\@tempa=\box46
\@tempa=\box47
\@tempa=\box48
\@tempa=\box49
\@tempa=\box50
\@tempa=\box51
\@tempa=\box52
\@tempa=\box53
\c@columnbadness=\count100
\c@finalcolumnbadness=\count101
\last@try=\dimen116
\multicolovershoot=\dimen117
\multicolundershoot=\dimen118
\mult@nat@firstbox=\box54
\colbreak@box=\box55
) (c:/texlive/2009/texmf-dist/tex/latex/blindtext/blindtext.sty
Package: blindtext 2009/06/14 V1.9b blindtext-Package
(c:/texlive/2009/texmf-dist/tex/latex/tools/xspace.sty
Package: xspace 2006/05/08 v1.12 Space after command names (DPC,MH)
)
\c@blindtext=\count102
\c@Blindtext=\count103
\blind@countxx=\count104

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

\blindtext@numBlindtext=\count105
\blind@countyy=\count106
\c@blindlist=\count107
\c@blindlistlevel=\count108
\c@blindlist@level=\count109
\blind@listitem=\count110
\c@blind@listcount=\count111
\c@blind@levelcount=\count112
\blind@mathformula=\count113
\blind@Mathformula=\count114
) (./balazs_et_al.aux)
\openout1 = `balazs_et_al.aux'.

LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 92.
LaTeX Font Info: ... okay on input line 92.
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 92.
LaTeX Font Info: ... okay on input line 92.
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 92.
LaTeX Font Info: ... okay on input line 92.
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 92.
LaTeX Font Info: ... okay on input line 92.
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 92.
LaTeX Font Info: ... okay on input line 92.
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 92.
LaTeX Font Info: ... okay on input line 92.
LaTeX Font Info: Try loading font information for U+msa on input line 165.
(c:/texlive/2009/texmf-dist/tex/latex/amsfonts/umsa.fd
File: umsa.fd 2009/06/22 v3.00 AMS symbols A
)
LaTeX Font Info: Try loading font information for U+msb on input line 165.
(c:/texlive/2009/texmf-dist/tex/latex/amsfonts/umsb.fd
File: umsb.fd 2009/06/22 v3.00 AMS symbols B
)
LaTeX Font Info: Try loading font information for OMS+cmr on input line 165.

(c:/texlive/2009/texmf-dist/tex/latex/base/omscmr.fd
File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
)
LaTeX Font Info: Font shape `OMS/cmr/m/it' in size <10> not available
(Font) Font shape `OMS/cmsy/m/n' tried instead on input line 165.
[1

]

Package natbib Warning: Citation `Johnson54' on page 2 undefined on input line
172.

Package natbib Warning: Citation `Kan76' on page 2 undefined on input line 176.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Package natbib Warning: Citation `Taillard90' on page 2 undefined on input line
 176.

Package natbib Warning: Citation `Juan10' on page 2 undefined on input line 176
.

Package natbib Warning: Citation `Horvath11' on page 2 undefined on input line
176.

Package natbib Warning: Citation `Taillard90' on page 2 undefined on input line
 178.

Package natbib Warning: Citation `Juan10' on page 2 undefined on input line 178
.

Package natbib Warning: Citation `Horvath11' on page 2 undefined on input line
178.

Package natbib Warning: Citation `Taillard93' on page 2 undefined on input line
 178.

Package natbib Warning: Citation `Balazs12APH' on page 2 undefined on input lin
e 180.

Package natbib Warning: Citation `Balazs12CEC' on page 2 undefined on input lin
e 184.

[2]

Package natbib Warning: Citation `Ravetti10' on page 3 undefined on input line
186.

Package natbib Warning: Citation `Ravetti10' on page 3 undefined on input line
188.

Package natbib Warning: Citation `Balazs12APH' on page 3 undefined on input lin
e 188.

Package natbib Warning: Citation `Balazs10IUM' on page 3 undefined on input lin
e 188.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Package natbib Warning: Citation `Balazs10flat' on page 3 undefined on input li
ne 188.

Package natbib Warning: Citation `Balazs12CINTI1' on page 3 undefined on input
line 190.

[3]

Package natbib Warning: Citation `Johnson54' on page 4 undefined on input line
211.

Package natbib Warning: Citation `Balazs12APH' on page 4 undefined on input lin
e 233.

[4]

Package natbib Warning: Citation `Holland92' on page 5 undefined on input line
239.

Package natbib Warning: Citation `Nawa99' on page 5 undefined on input line 239
.

Package natbib Warning: Citation `Holland92' on page 5 undefined on input line
253.

Package natbib Warning: Citation `Nawa99' on page 5 undefined on input line 284
.

Package natbib Warning: Citation `Balazs10IUM' on page 5 undefined on input lin
e 285.

Package natbib Warning: Citation `Balazs10flat' on page 5 undefined on input li
ne 285.

Package natbib Warning: Citation `Balazs12APH' on page 5 undefined on input lin
e 285.

[5]

Package natbib Warning: Citation `Moscato89' on page 6 undefined on input line
326.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Package natbib Warning: Citation `Balazs12APH' on page 6 undefined on input lin
e 340.

Overfull \hbox (5.27379pt too wide) in paragraph at lines 340--341
[]\OT1/cmr/m/n/12 In case of the PSFP prob-lem two types of in-di-vid-ual rep-r
e-sen-ta-tion (i.e. two
 []

[6]

Package natbib Warning: Citation `Balazs12APH' on page 7 undefined on input lin
e 348.

Overfull \hbox (7.20699pt too wide) in paragraph at lines 348--349
[]\OT1/cmr/m/n/12 However, de-spite the com-pu-ta-tional over-head, this en-cod
-ing man-ner turned
 []

Package natbib Warning: Citation `Balazs12APH' on page 7 undefined on input lin
e 354.

LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available
(Font) Font shape `OMS/cmsy/m/n' tried instead on input line 362.
[7]

Package natbib Warning: Citation `Ruiz07' on page 8 undefined on input line 379
.

Package natbib Warning: Citation `Ruiz07' on page 8 undefined on input line 420
.

Package natbib Warning: Citation `Nawaz83' on page 8 undefined on input line 42
4.

Overfull \hbox (1.74464pt too wide) in paragraph at lines 424--425
[]\OT1/cmr/m/n/12 An ini-tial per-mu-ta-tion is cre-ated by us-ing the de-ter-m
in-is-tic NEH heuris-
 []

Package natbib Warning: Citation `Ruiz07' on page 8 undefined on input line 441
.

[8]

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Package natbib Warning: Citation `Balazs12CEC' on page 9 undefined on input lin
e 447.

[9]

Package natbib Warning: Citation `Ravetti10' on page 10 undefined on input line
 479.

Package natbib Warning: Citation `Nawaz83' on page 10 undefined on input line 4
84.

Package natbib Warning: Citation `Ravetti10' on page 10 undefined on input line
 495.

[10]

Package natbib Warning: Citation `Balazs12CINTI1' on page 11 undefined on input
 line 518.

Package natbib Warning: Citation `Balazs12APH' on page 11 undefined on input li
ne 518.

[11]

! LaTeX Error: File `illustration' not found.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
 ...

l.535 ...graphics[width=1\textwidth]{illustration}

I could not locate the file with any of these extensions:
.eps,.ps,.eps.gz,.ps.gz,.eps.Z
Try typing <return> to proceed.
If that doesn't work, type X <return> to quit.

Package natbib Warning: Citation `Taillard93' on page 12 undefined on input lin
e 548.

[12]

Package natbib Warning: Citation `Ruiz07' on page 13 undefined on input line 55
2.

Package natbib Warning: Citation `Taillard93' on page 13 undefined on input lin
e 565.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Overfull \hbox (25.50098pt too wide) in paragraph at lines 565--565
[][]\OT1/cmr/m/n/10 http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancem
ent.dir/ordonnancement.html|
 []

Package natbib Warning: Citation `Ruiz07' on page 13 undefined on input line 56
5.

[13]

Package natbib Warning: Citation `Balazs12CINTI1' on page 14 undefined on input
 line 580.

[14]

Package natbib Warning: Citation `Balazs12CINTI1' on page 15 undefined on input
 line 692.

[15]
No file balazs_et_al.bbl.

Package natbib Warning: There were undefined citations.

[16] (./balazs_et_al.aux))
Here is how much of TeX's memory you used:
 1774 strings out of 493849
 21226 string characters out of 3152231
 88490 words of memory out of 3000000
 5027 multiletter control sequences out of 15000+200000
 13870 words of font info for 52 fonts, out of 3000000 for 9000
 714 hyphenation exceptions out of 8191
 32i,9n,34p,1126b,276s stack positions out of 5000i,500n,10000p,200000b,50000s

Output written on balazs_et_al.dvi (16 pages, 49736 bytes).

illustration.png
Click here to download high resolution image

http://ees.elsevier.com/swevo/download.aspx?id=10990&guid=e35d12b8-5c49-4c65-b809-a5ee2c53d0c8&scheme=1

