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Abstract

In this report we introduce a novel traffic model for event forecasting research

that we validated against real world traffic. For the collection of reference

events we used a small WSN deployed nearby various types of roads and

crossroads, where the sensors transformed the sampled waveforms generated

by vehicles into event descriptions that included the sensor’s location infor-

mation, a time-stamp, and the intensity of the signal as a degree of confidence

in its detection.

We analyzed the reference sequences of events and we proposed a proba-

bilistic, non i.i.d. (independent and identically distributed) aperiodic traffic

model, that can be used to demonstrate the effectiveness of various event

forecasting protocols.

When we compared the statistical properties of the generated events to

the reference, we found that the proposed model can well approximate the

various descriptive statistics as well as correlation patterns of real world

measurements.



Introduction

The traffic model proposed here is used to validate the instance based anytime

rare event forecasting solution that we proposed in an earlier work[1]. In spite

of the fact that the model was proposed for a specific task or protocol, the

formulation is general, so it can be used to validate other forecasting models

even if they are based on statistical[2], fuzzy logic[3] or other forecasting

methods.

We define the binary event e = (ID, µ, t) as something that happened

with the probability µ, at a given sensor identified by ID, at time t. We

assume that a localized or distributed signal processing algorithm can detect

an event (for instance a truck passing a sensor node can be detected based

on the audio spectrum signature that it produces) and provide a detection

confidence µ ∈ [0..1] for each predefined event e ∈ E, where E is the set

of all possible events. If the µ detection confidence is significant, the node

broadcasts a message about the event where the µ ∈ [0..1] parameter is

proportional to the norm between the reference and the measurement.

As the cars move through the network, they generate different event se-

quences. A moving car crossing the monitored field (or part of the road)

generates a Global Sequence (GS) which is a sequence of events in the net-

work. There can be multiple GSs in the network, which can overlap with each

other or even with themselves (multiple cars crossing the field randomly on

a similar path). Each node is aware of only a subset of the global sequence

(GS), either due to its own observations, or by overhearing nodes in its vicin-

ity. These subsets are called Local Sequences (LS).

For illustration, let us suppose that a sensor field partially covers an

uphill road, as in Fig. 1 (left). Cars are moving on the road, generating
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Figure 1: Example of a sensor field that monitors an uphill road (left) car
density profile function (right)

events on the nearby nodes (the larger circles depict the sensing ranges). If

a car passes on the road on side A, it will be seen in order by nodes n1, n3,

n2, n5, n4. If we suppose that all these five nodes are in each other’s radio

range, all of them will be informed by the passage of the car next to any of

the other nodes. Thus, when the car arrives next to node n4, this node will

see a corresponding normalized local sequence similar to LS1={(4,0.92,0),

(5,0.91,-3), (2,0.95,-5), (3,0.97,-9), (1,0.9,-11)}, which means that at relative

time t = −11 node n1 detected the car with a probability µ = 0.9, then node

n3 at time t = −9 detected the event with probability µ = 0.97 and so on.

The probability values and the detection times here are just some ex-

amples. However, the differences in the successive detection times are an

indication of the vehicle’s speed, and can vary from car to car. Similarly, if

another car running on side B arrives next to node n4, having passed next to

nodes n5, n2, n3, and n1 in this order, the corresponding local sequence on

node n4 will be similar to LS2={(4,0.9,0), (1,0.99,-5), (3,0.92,-7), (2,0.91,-

10), (5,0.91,-13)}.
Please note that the first sensor that detects a car on side B is not n4 but

n5, since the B side of the road at the bottom of the hill is not covered by

4n’s sensing range. Since n4 is the latest that detected the car at the top of

the hill, it is the first in the LS description (as in LS1). The time between car

arrivals is exponentially distributed, but once a car arrives, it continues its
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way on the road in similar manner as the previous cars. Node n4 covers parts

of both road sides, it will thus receive events originating from cars running in

both directions. The events are not labeled, so the node cannot distinguish

between events generated by cars passing on side A or side B of the road.

Also, since more than one car can be on the same road side in the same time,

the received sequences can be overlapped even with themselves.
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The proposed traffic model

Based on the retrieved data we devised a model that can generate similar

traffic to that of the observed.

Algorithm 1 S = F (LS, sT, Jtλ, Jmθ, Jmk, λ)

1: S ← {�}; i← 0;
2: for n← 1 to #LS
3: Cs← 0;
4: while Cs ≤ sT
5: L← LSn; D ← 0; i← i+ 1;
6: for m← 1 to |L|
7: D ← D − 1/Jtλ+ ∼ Exp(Jtλ);
8: Lt[m]← Lt[m] +D;
9: Cs← Cs−densProfile(i)+ ∼ Exp(LSnλ );
10: S ← S ∪ (Lnt [.] + Cs);
11: S ← S ∪ PoissonPointProcess(λ);
12: Sµ[.]←∼ Gamma(Jmθ, Jmk);

Algorithm 1 defines the proposed traffic generation model. Let’s take the

Fig. 1 (left) as an example throughout this description and let’s say that we

want to model this scenario. In this instance there will be two local sequences

enforced by the topology, namely LS1 and LS2, as discussed earlier. Further

let’s say that we want to generate traffic that covers sT [sec] time period.

So there is a monitored uphill road and the question is what events will be

generated by the traffic. First we discuss how each sequence is successively

merged into a collection of interlaced events, and then we discuss the added

noise.

The generated events (line 1) are collected in the set S, which will be the

result. The variable i is used to iterate the density profile. For each LS (line
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2-10) we generate the event sequences (line 4-10) by starting the n-th local

sequence multiple times (on the same road multiple cars are passing through),

until it reaches the simulation end time sT . By starting we mean to copy

the events of the n-th LS (Ln) to the S set where the event’s timestamps are

shifted (line 10). Between each start there is an exponentially distributed

random delay Exp(LSnλ ) (line 9) (in our example LS1
λ = 1/80 and LS2

λ =

1/100), which represents the time between car arrivals (in this case there is

more traffic on road A, represented by LS1). The notation Lnt [.] +Cs means

(line 10) that we select the time stamp (t) of each ([.]) event from the Ln

n-th LS and add to it Cs (this is the shifting), which stores the offset when

the L local sequence is started and merged with the rest of the events in (S).

We also add a time jitter to each event (line 6-8), which follows expo-

nential distribution (shifted as to have zero expected value) of parameters

∼ Exp(Jtλ) (line 7). This jitter models the time deviations between events

in a particular sequence (each car has a different speed profile). Then, we

also add noise to the events, using a λ rate Poisson point process (line 11),

i.e., the time between noise events is of λ parameter exponential distribu-

tion (mean 1/λ). The noisy events are uniformly distributed among the

nodes. Finally, we generate the µ record for each event in S which is of

∼ Gamma(Jmθ, Jmk) distribution (line 12). This models the inaccuracy of

the detection.

As it can be seen (line 9) the inter arrival time (between sequence starts) is

not i.i.d., since we introduced a density profile function (line 9, Fig. 1 (right))

which modulates the mean time between sequences starts (car arrivals). The

car density profile in our case is a simple zero mean repetitive triangular

function as it can be seen in Fig. 1 (right). The front end linear function

defines the beginnings of a traffic batch (which is usually steeper than the

back end), the back end linear function defines the end profile of a traffic

batch, while the depletion constant balances the overall delay to zero, so it

only changes the relative positions of cars and does not create therefore new

cars in order to temporally increase the traffic.
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Traffic model evaluation

In this section we present six major comparisons. Fig. 2, illustrates the

events generated by the above algorithm and detected by the five nodes, over

a 1500sec simulation period. The burstiness of the traffic can be well seen

(modulated according to the density profile, line 9, Fig. 1 (right)). In Fig.
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Figure 2: Mixed events obtained after multiple executions of LS1 and LS2

3, (top) we compare the run sequence plots of the data. The run sequence

plot displays the consecutive time gaps between events that the network as a

whole received, indexed by their order of occurrence. As it can be seen there

are no significant shifts or trends, nor outliers in respect to the reference.

In Fig. 3, (bottom) we compare the lag plots of the data, where both

axes list the run sequence (consecutive time gaps between events) as in Fig.

3, (top). The lag is chosen equal to 1 so the vertical axis is the same as

the horizontal, except that it is shifted forward by one, i.e., the x coordinate
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Figure 3: Run sequence and lag plot comparisons

of a particular Pk point on the lap plot represents the time gap before the

k − th event, and the y coordinate represents the time gap after the k − th
event. It can be seen that the structure is similar, and there is neither

significant structure nor trend. Fig. 4, compares different probability density

function (pdf) profiles (in the figures we depicted the absolute frequency

instead of the relative one so that the comparison can be stricter) and the

auto-correlation of the inter-event time sequences. Each curve is depicted

with a 95% confidence interval (the empirical probability density function is

assumed to be approximately normal, since the central limit theorem applies).

Fig. 4, (top, left) depicts the p.d.f. profile of the inter-event time originating

from the network as a whole. The spikes in the profile can be traced back

to the average inter-event time in the local sequences. If we study the p.d.f.

profile of the inter event time on node-by-node basis - Fig. 4, (top, right) (just

rearranged events) - the spikes disappear, since then it is a close estimation

of the p.d.f. profile of the time between car arrivals (assuming here the

topology from Fig. 1 (left)). Both profiles closely match. In Fig. 4, (bottom,

left) we can see the p.d.f. density profile of the event occurrence probability,

which can be closely approximated by a Gamma distribution. Finally, Fig. 4,
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Figure 4: Autocorrelation and various empirical density function profile com-
parisons

(bottom, right) shows the auto-correlation of the inter-event time sequences,

which is caused by the burstiness of the traffic. It is well extrapolated by the

discussed density profile.
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Conclusion

In this report we have outlined a probabilistic approach to model non i.i.d.

(independent and identically distributed) aperiodic traffic, which is then

used to demonstrate the effectiveness of an earlier proposed event forecasting

method.

The traffic model was validated against well documented real world mea-

surements of various types. We presented numerous comparisons, and the

main features were found to match the features of real measurements.
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