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Current trends in cloud computing suggest that both large, public clouds and small, private
clouds will proliferate in the near future. Operational requirements, such as high band-
width, dependability and smooth manageability, are similar for both types of clouds and
their underlying data center architecture. Such requirements can be satisfied with utilizing
fully distributed, low-overhead mechanisms at the algorithm level, and an efficient layer 2
implementation at the practical level. On the other hand, owners of evolving private data
centers are in dire need of an incrementally upgradeable architecture which supports a
small roll-out and continuous expansion in small quanta. In order to satisfy both require-
ments, we propose Poincaré, a data center architecture inspired by hyperbolic tessellations,
which utilizes low-overhead, greedy routing. On one hand, Poincaré scales to support large
data centers with low diameter, high bisection bandwidth, inherent multipath and multi-
cast capabilities, and efficient error recovery. On the other hand, Poincaré supports incre-
mental plug & play upgradability with regard to both servers and switches. We evaluate
Poincaré using analysis, extensive simulations and a prototype implementation.

© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Cloud computing has been emerging to be the domi-
nant operation model of present and future networked ser-
vices. In order to provide the underlying pervasive
networking functions, data centers have to scale up to pre-
viously unseen proportions. Tens of thousands of servers is
already the norm for large providers, and this number is
predicted to grow significantly over the next few years,
as services, storage, as well as enterprises and users are
increasingly relying on the cloud. Factor in virtualization
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and we are easily in the range of a million virtual end
points. In parallel to migrating to huge, public clouds, an-
other trend is gaining momentum: more and more organi-
zations decide to consolidate their computing resources
into small- or medium-scale private clouds [2]. There are
multiple reasons behind the surge of private clouds. First,
security and privacy issues using a public infrastructure
can be prohibitive for certain organizations, such as gov-
ernments [3]. Second, private cloud operation policies
and management procedures can be tailor-made to the
owner’s liking [2]. Finally, of course, cost is always a decid-
ing factor; surprisingly, operating a private cloud could be
advantageous in the long(er) run [4]. As a consequence, the
increasing proliferation of both small and large data cen-
ters are highly likely.

There are two orthogonal requirements for a data cen-
ter design to suit both the needs of small-and-starting
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and large-and-evolving data centers. First, such a design
should be structurally upgradable: a small company should
be able to start a private data center quickly and with a
limited budget, and build it out incrementally in small
quanta [5]. Note that even if servers are co-located at a
data center provider, small and medium enterprises
(SMEs) still have to face increasing costs as the number
of servers increases. On the other hand, upgrades are also
frequently needed in large data centers, triggered by a
growing user base (private, e.g., Facebook) or deployment
of more demanding cloud applications and getting more
corporate customers (public, e.g., Amazon). As a well-
known real-world example, Facebook has upgraded its
data center facilities frequently and step-by-step [6],
resulting in a doubling of servers over the course of
7 months in 2010 [7]. With most designs providing mech-
anisms only for large-scale expansion [8] [9], little work
has been already done regarding incremental upgradability
in data centers. LEGUP [10] leverages hardware heteroge-
neity to reduce the cost of upgrades in fat-tree based data
centers. Jellyfish [11] and REWIRE [12] propose a non-sym-
metric topology to facilitate upgradability of data centers
and employ shortest-path based MPTCP [13].

Second, the respective data center design should be
operationally scalable providing performance, dependabil-
ity (meaning path diversity and good failure tolerance)
and manageability (i.e. simple configuration of the layer-
2 protocol) for tens or hundreds of thousands of network
nodes. On the network algorithm level, this implies distrib-
uted, low-overhead mechanisms both for routing and fail-
ure handling. On the implementation level, due to both
virtualization and network management reasons, data cen-
ters are often managed as a single logical layer 2 fabric. On
the other hand, traditional LAN technologies do not scale
well to the size of large data centers. Network layer tech-
niques, such as large forwarding tables, loop-free routing,
quick failure detection and propagation, etc. are needed
to be realized utilizing only switch hardware. Recently pro-
posed solutions, such as TRILL [14], SEATTLE [15] and Port-
land [16], address these issues to a certain extent, but they
come with a cost of significant complexity at the switch/
fabric control plane. Other architectures, like BCube [8]
and VL2 [17], rely on servers routing to overcome this lim-
itation. While certainly a worthwhile approach, with the
advent of computation-intensive cloud services and the
migration of vast online storages into the cloud, coupled
with the cloud providers’ economic incentives to run their
servers close to their full capacity [18], we argue that serv-
ers may face resource constraints if being the main respon-
sible also for routing.

In this paper we propose Poincaré, a data center archi-
tecture which is by design structurally upgradeable and
operationally scalable. The topology of Poincaré is inspired
by hyperbolic tessellations, providing incremental expand-
ability and favorable performance characteristics. Poincaré
uses a fully distributed, low-overhead, greedy routing algo-
rithm efficiently utilizing the features of the topology. Such
a lightweight routing mechanism can be fully imple-
mented in layer 2, while keeping both the control and
the forwarding plane simple at the same time, enabling a
data center built out of commodity off the shelf (COTS) net-

work equipment. The main benefits of Poincaré are three-
fold. First, Poincaré's hyperbolic structure provides
analytically provable low network diameter and high per-
formance greedy routing, multiple short paths between
arbitrary nodes and high bisection bandwidth. Second,
Poincaré’s greedy routing mechanism harness the afore-
mentioned structural characteristics while allowing for
natural local failure handling within failure detection time
and low-overhead multipath and multicast routing. Final-
ly, Poincaré supports incremental plug & play upgradability
with regard to both servers and switches, while enabling a
small initial rollout and a flexible, budget-conscious way of
data center expansion. We justify our design with analyti-
cal proofs and extensive simulations augmented by a pro-
totype implementation and testbed experiments.

The rest of this paper is structured as follows. Section 2
introduces the Poincaré data center structure based on
hyperbolic tessellations. In Section 3 we present our gree-
dy geographic routing algorithm along with its multipath,
multicast and error recovery extensions. The incremental
structural and performance upgrade process is carefully
described in Section 4. In Section 5 we thoroughly evaluate
the performance of Poincaré via simulation. Section 6 intro-
duces the Poincaré prototype implementation and provides
testbed experiment results. Section 7 presents practical
considerations on cabling, initial rollout and expansion
costs. Finally, related work is described briefly in Section 8
and the paper is concluded in Section 9.

2. Structure: a trip to the hyperbolic space

A tree is a very cost effective interconnection structure
when routing has to be solved on a population of network
nodes. A k-ary tree can provide low diameter (low delay),
low average degree (low cost), easy loop-detection and
simple routing decision in the nodes [19]. Such compelling
properties qualify trees to be utilized in an array of routing
protocols (STP, OSPF, ISIS) and, more recently, in data cen-
ters. On the negative side, trees cannot ensure path diver-
sity and high throughput: two key requirements for data
center architectures. Recently, several augmentations of
trees have been proposed to overcome these limitations
by densification (e.g., Clos networks) providing multiple
paths, large bisection bandwidth and no single point of
failure [20] [17]. A common drawback of such approaches
is that when expanding the DC these “embedded” inter-
connection structures has to be carefully maintained and
sometimes completely replaced and rewired! to keep up
with the number of servers. Such complete rewiring in fact
mean the building of a new DC from scratch. LEGUP [10] ad-
dresses this issue by allowing for heterogeneous switches;
yet, it is only suited for large upgrades and relies on higher
layer mechanisms for performance.

Since we require Poincaré to be incrementally upgrade-
able, total rewiring is unacceptable. Thus we must need an
architecture which can preserve its inherent structure
regardless of the number of servers and still provide path
diversity and high throughput. In the following we design

1 When the arity of the tree has to be increased.

Please cite this article in press as: M. Csernai et al., Incrementally upgradable data center architecture using hyperbolic tessellations, Com-
put. Netw. (2013), http://dx.doi.org/10.1016/j.comnet.2012.12.004



http://dx.doi.org/10.1016/j.comnet.2012.12.004

M. Csernai et al./ Computer Networks xxx (2013) XXx—xXx 3

a topology inspired by tessellations embedded in the
hyperbolic plane exhibiting structural similarity with trees
[21]. Intuitively a tessellation can be interpreted as an aug-
mentation of the tree structure in which the branches are
connected and can exchange traffic without affecting the
core.

2.1. The basic topology of Poincaré: hyperbolic tessellations

During the construction of the topology we use the
Poincare disk model of the hyperbolic plane. The Poincare
disk model represents the hyperbolic plane with a unit cir-
cle in the Euclidean plane. In this model the hyperbolic
lines are arcs or lines that are perpendicular to the unit cir-
cle. The model has the property that while converting a
shape form the hyperbolic plane to the Euclidean plane
the angles of the shape are preserved. The distance in the
Poincare model can be easily calculated from the Euclidean
coordinates (in the rest of the paper we refer to these sim-
ply as coordinates) of the points with a formula shown la-
ter in Section 3.1. The reflection about a line in the
hyperbolic plane is a reflection about the line or an inver-
sion respect to the circle in the Euclidean plane.? These
properties make the Poincare model well suitable to con-
struct hyperbolic tessellations and represent them in the
Euclidean plane. The (n,k) regular tessellation uses regular
n-gons from which k meet in a given vertex to fill the hyper-
bolic plane with no overlaps and no gaps.>

If we consider the vertices of the polygons as nodes, and
the sides as links, we have a regular topology embedded
into the hyperbolic plane. We define the Poincaré topology
to contain a regular tessellation of the hyperbolic plane as
a subgraph. This subgraph will serve as a “base” topology
which is always present in a Poincaré DC and over which
we can install upgrades over time (Section 2.2). This base
topology immediately ensures that greedy routing is
100% successful, which we prove later in Section 3.

The coordinates of the nodes for a given (n, k) tessellation
can be easily computed by implementing simple geometric
mappings in the hyperbolic plane. Start from an initial reg-
ular n-gon. The coordinates of the first node of the initial

polygon are (0, cos(m/k + 7z/n)/\/cos(7r/k)2 — sin(/n)?).
We rotate this point with 27/n around the origin for n — 1
times to get the first polygon. Reflect the vertices of the poly-
gon about each possible side of the polygon for getting some
other vertices and sides. Now reflect all points about all pos-
sible sides and do this procedure recursively to construct all
nodes up to a defined number. The first steps of this process
is shown on Fig. 1. Note that the hyperbolic tessellations are
well studied geometrical objects; for a more detailed
description consult [22]. A source code in Java can be found
at [23].

This construction allows us to generate a tessellation of
arbitrary size. The derived coordinates will point to the

2 It depends on what the hyperbolic line’s image is in the Euclidean
plane.

3 As opposed to Euclidean tiling there exist a (n,k) tiling on the
hyperbolic plane if%+% < % because on the hyperbolic plane the angles of
a regular n-gon could be arbitrary small.

(0.22,0.68) (46 0%63)

(0.58, 0:42)

(-0.38, 0.12)
(0.38,.012)

(0.23,-0.32)
(-0.23, -0.32)

Fig. 1. ows the initial polygon of a (5,4) hyperbolic tessellation. The
vertices of the initial polygon are reflected about one side of the polygon
(blue line) to get one of the polygons belonging to the next level of the
tessellation. The coordinates of the tessellation are shown next to the
nodes. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

logical places of network elements (servers or switches)
and the sides of the polygons points the location of the
links. See the right side of Fig. 2 for an example. For a star-
ter, imagine the topology of Poincaré like we place switches
and servers (in this order) to the unoccupied node posi-
tions starting from the inner part of the tessellation.

Fig. 2 shows a fat-tree topology and a (5,4) tessellation
having similar topological parameters. In th figure we plot-
ted a traffic heat map of an all-to-all traffic scenario (every
node sends one unit of traffic to all other nodes) for a 15
server fat-tree topology and a basic Poincaré topology with
similar topological parameters (average degree, average
path length). It can be seen that Poincaré’s routing can
effectively utilize the “side” links to exchange traffic be-
tween “regions” of a tessellation without affecting the
core. Basically this property will enable us to start building
from a fixed sized core and implement incremental server
and performance upgrades (as opposed to fat-tree’s core
which size varies when upgrading to larger core switches).

The basic topology immediately possesses compelling
properties. In the sequel we prove that the diameter of
such a network grows logarithmically with the network
size while the degree of the nodes is bounded by k.

Theorem 1. The diameter of the (n, k) tessellation grows
logarithmically with the number of nodes.

Proof. Denote the number of polygons of the mth level
with p,,.. Let v, be the number of vertices that belong to
level m and do not belong to level m — 1 (see Fig. 3, where
v =5, v, =25, etc). For any n > 3, pj;+1 and v+ can be cal-
culated from p,, and v, according to the following
recursion.
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Fig. 2. Link traffic distribution in case of all-to-all traffic in (left) fat-tree and (right) tessellation structures. The squares are switches and the circles are

severs.

Fig. 3. The levels of the recursion is shown with different colors in case of
a (5,4) tessellation. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Uni1=MN—=3)n+ (k—3)(n—-2)vy —
D1 = Um +(k_3)7/m — DPm

Solving the recursion we get:

(vm> B ((k—2)(n—2)—1 —(n—Z))m<vo)

P/ k-2 -1 Do

Let M be the matrix of the recursion, then M™ can be writ-
ten as M™=QA™Q !, where Q is the matrix of the eigen-

vectors of M and A is a diagonal matrix whose nonzero
elements are the corresponding eigenvalues. In our case

(Z-2)>-4-Z —Z-+\/(Z-2)*-4
Q= 22 - 2(k—2)
1 1

(n—2)pp,

Z-2-+/(Z-2)*-4
A= 2 0
0 Z-24+/(Z-2)*-4

where Z= (n —
we get

2)(k — 2). Hence by using 7 =n and po=0

— (Z-2-Y)"(Y-2)—(Z-2+Y)"(Y+2)
m — 2T+my
~nZ-1)"=n(n-2)k-2)—1)"

where Y = /(Z —2)* -

4 and the last step is due to Z= Y.
For the special case n=3

Umy1 = (k—4) U — Up_1.

Let 1, be the solutions of equation > — (k—4)r+1=0
then v, can be written in the following form:

Um = aif + b3,

where a and b can be calculated from #;=3 and
1p=3(k — 3).

Since the number of vertices grows exponentially with
the number of levels, the diameter is at most (2m+1)3
which completes the proof. O

Although our model permits an infinite number of dif-
ferent tessellations to use, there can be major differences
between them. First of all, k, i.e. the number of polygons
to place next to each other in the tiling determines the
minimal degree in the topology. Tessellations with higher
k produce higher minimal degrees in the resulting topolo-
gies. On the other hand, the diameter of the network is lin-
early dependent on n. For example, a (3,16) tessellation
produces small diameter but the minimal degree is 16 in
the center of the topology. Note that we always build a fi-
nite topology so at the sides of the system (where the serv-
ers will reside) the degree is lower (see Fig. 3).

When a Poincaré system is designed, it can be chosen,
how many switches to use constructing a DC topology for
a given number of servers. We measured various fat-tree
topologies and found that usual value of the switch to ser-
ver ratio is around 0.16. We use this ratio as well. For
example, we install 640 switches in case of a 4000-server
system. Then the coordinate list is generated for 4640
nodes. The switches are placed to the innermost possible
node positions (closest to the center of the disk we tile),
and the servers are placed to the rest of the locations.

Please cite this article in press as: M. Csernai et al., Incrementally upgradable data center architecture using hyperbolic tessellations, Com-
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2.2. Constructing high-performance topologies

To improve performance we can add more links be-
tween our nodes. For analysis and evaluation purposes we
now present a simple heuristic algorithm which produces
more dense topologies by systematically adding more links
on top of the basic topology. In Section 4 we also give more
realistic algorithm which will adapt to the number and
capabilities (port number, interface speed) of switches
and servers we have, so as to make the best out of a given
set of devices.

We can add links heuristically as follows: take an (n,k)
tessellation as a basic topology and a radius r, and connect
the nodes whose distance in the hyperbolic space is less
than r. The Poincaré distance d(, ) between neighbor nodes
is different for different (n,k) tessellations. If r is smaller
than d(,x, then there will be no extra links in the graph
other than links in basic topology. If we increase r more
and more links are added. To meet the realistic constraint
that servers can have a very limited number of ports, we
use different connection radius ry, and rs, in case of
switches and servers respectively, thus connection radius
can be parametrized for switches and servers separately
(see Fig. 4 for an example). We connect two switches if
their distance is less than ry,. In case of server-server
and server-switch links, ry is used as a connection radius.

Using this methodology, link locality is preserved here-
by moderating cabling costs. Also note that due to its hea-
vy-tailed degree distribution Poincaré uses only a small
number of large switches as it can be seen on Fig. 5.

Table 1 presents how the characteristics of the topology
is enhanced by adding more and more links on top of di-
verse basic 4000-server Poincaré topologies. In all cases,
we use 640 switches. The different basic topologies are
densified with parameters r,, and r. to achieve high bisec-
tion bandwidth. It can be seen from the results, that all tes-
sellations can lead to high performance. However low n,
high k tessellations, such as (3,16) achieves this with high
max degree (IA<SW) and low diameter (D). For high n, low k
tessellations, the system presents with lower degrees but
higher diameter. There is a middle ground in case of
(5,6) tessellation, although we note that the bisection
bandwidth is slightly lower than in case of the other two
tessellation. This means that (5,6) needs more densifica-
tion to achieve the same performance, which increases
its max degree to 72.

o
o
?
[}
g5
§ 2
£
g9
)
3 -
c
S 3
T
L 2 |- (104)r_sw=3.7,r_se=3.3 N
< | ° (5,6) r_sw=4.6,r_se=3.3
? |4 (3816)r_sw=5.5r_se=4.8
2 T T T T T T
1 2 5 10 20 50
Degree

Fig. 5. Cumulative degree distribution of the different tessellation
topologies.

Bisection bandwidth is calculated as follows. We define
a random cut on the graph, i.e. we divide the nodes ran-
domly into two equal sized parts. We need to count the to-
tal bandwidth between the two parts. For this we consider
the weight of each link of the graph as 1. We add two addi-
tional nodes s and t to the graph. We connect one of them
with all the nodes contained in the first part of the cut.
Also, we connect the other node to every node in the other
part. We set the weight of these new links to 2000 so these
links cannot be bottlenecks. The maximal flow is calculated
between s and t. Since there is only a slight variation in the
results, we repeat this process 10 times, and consider the
average value of the maximal flows as the bisection band-
width of the graph.

As our results show there are many aspects of choosing
the best tessellation for a specified DC architecture given
its network size, port number restrictions, budget, etc.
We note that our simple algorithm increases the average
degree by large quanta, but we emphasize that link addi-
tions can be done with arbitrary granularity and using di-
verse algorithms to make the best out of a fixed budget
(see Section 4 for a realistic algorithm). Various finer-
grained optimization methods (in terms of throughput,
cost, etc.) would further enhance Poincaré overall perfor-
mance, however such techniques are not in the scope of
this paper. In the next section we compare Poincaré to cur-
rent DC topologies in terms of performance and costs.

Fig. 4. A basic (left) and performance topologies by increasing rs,, (middle) and both ry, and r (right).
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Table 1

Topological parameters of different (n,k) tessellations in case of 4000-server topologies. The columns from left to right: tessellation type, basic tessellation
distance, connection radius for switches and servers, number of links, total number of switch ports, total number of server ports, switch max. degree, server

max. degree, avg. path length, diameter and bisection bandwidth.

(n,k) d(n,k) Tsw Tse |E‘ ‘psw‘ ‘pse‘ i<5w i‘se T D B
(3,16) 3.28 33 33 9568 6700 12,436 16 9 6.23 7 4781
5.5 33 11,212 9988 12,436 64 9 5.20 7 5610
5.5 4.8 12,743 11,252 14,234 64 9 5.06 7 6434
(5,6) 2.19 2.2 22 5870 3785 7955 6 5 9.59 12 2847
4.4 2.2 8500 9045 7955 48 5 6.09 9 4208
4.4 33 11,740 11,595 11,885 48 5 5.32 9 5855
4.6 33 12,745 13,605 11,885 72 5 5.04 9 6334
(10,4) 1.67 1.7 1.7 4700 2520 6880 4 4 12.79 17 2397
3.7 1.7 7345 7810 6880 36 4 7.52 11 3655
3.7 33 12,685 11,910 13,460 36 4 5.91 11 6354
Table 2

Topological comparison of different DC topologies, number of servers is 4000. The columns are: DC type, num. of switches, num. of links, num. of 1 Gbps ports,
num. of 10 Gbps ports, switching costs in K$, maximal switch degree, maximal server degree, diameter, bisection bandwidth.

DC type [Sw| IE| [P1cl [P10g] $K kw kse b B

BCube (n=16,k=2) 762 12,000 24,000 0 2400 16 3 8 6036
BCube (n=8,k=3) 2028 16,000 32,000 0 3200 8 4 10 7866
Fat-Tree (n = 28) 980 14,976 29,952 0 2995 28 1 6 7529
Poincaré (4,10), 1y = 3.7 640 12,685 25,370 0 2537 36 4 11 6359
Poincaré (4,10), rgy = 3.3 640 11,870 21,740 2000 2674 24 4 11 10,672

2.3. Topological comparison of DC topologies

In the following the topological parameters of Poincaré
is compared to fat-tree and BCube topologies. We demon-
strate that our system is comparable to these currently
used DC systems in terms of bisection bandwidth for the
same amount of switching costs. The costs of the systems
are estimated by counting all ports in the system. Current
price trends indicate that the cost of switches can be esti-
mated for $100 per 1 Gbit/s ports. Also, a DC specific
1 Gbit/s server port is also estimated as $100. Table 2 pre-
sents the properties of 4000 server Poincaré topologies
with corresponding fat-tree and BCube structures. A 4000
server DC topology can be built with the BCube fabric
two ways. We can either build it with two layers of 16-port
switches or three layers of 8-port switches. We see a differ-
ence between the two systems in terms of costs and per-
formance. A same size DC topology with the fat-tree
fabric is achievable only with 28-port switches. This topol-
ogy is between the two BCube variants in terms of costs
and topological performance, although we note that fat-
tree has lower and fixed diameter. On the other hand,
BCube offers link disjoint multipath capabilities for the
residing servers, while regular fat-trees do not. One can
see that Poincaré is comparable with fat-tree and BCube
topologies in terms of costs and bisection bandwidth while
using less switches (|Sw|). Current technological trends al-
low us to depend on larger switches,* as the price of such
switches grows only linearly® with the number of their ports

4 VL2 for example uses at least 40-port switches for a 4000-server DC
topology.

5 The price per port might even decrease with switch degrees up to a
point.

[24]. For example, Arista’s latest offerings even allow for 384
ports per switch [25].

In the last row of Table 2 we demonstrate that Poincaré
can be easily augmented with high capacity links
(10 Gbps). We put such high capacity links between the
most inner core switches of the topology. We estimate
such ports to be $250. We can see that for about the same
switching costs, we can enhance the bisection bandwidth
of the topology with the use of high capacity links while
lowering the total number of links between switches.
While this comparison looks unfair towards fat-tree and
BCube, we note that those topologies cannot benefit from
such performance enhancements out of the box. BCube
routing is highly specialized for the homogeneous hyper-
cube structure. Fat-tree needs other Layer 2 and Layer 3
extensions to take advantage of such enhancements [17].
In Section 5 the effect of high capacity core links is ana-
lyzed through traffic flow simulations.

3. Routing: greedy geographic routing

Poincaré routes greedily on the geographic coordinates
of nodes in the tessellation. By using greedy routing the for-
warding and control plane becomes very simple as opposed
to current DC architectures. This is because all traditional
control plane issues (path computation, guaranteeing
loop-freeness, failure localization, reconvergence from fail-
ures, avoidance of route oscillations, etc.) usually imple-
mented as a routing protocol can be completely omitted
when greedy routing is used. In this section we present
the basic routing mechanism and prove its performance
on Poincaré’s structure in an analytical manner. Simple
yet efficient multipath and multicast algorithms are also
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proposed, which both leverage and enhance the greedy
routing paradigm, and sustain the low overhead operation.

3.1. Basic routing mechanism

In greedy geographic routing, by default, the routing
mechanism does not require routing states to be kept in
the switching fabric. The routing decision is solely based
on the metric distances between the link neighbor nodes
(11, 7>) of u and the destination node t(tq,t,). An interme-
diate node on the forwarding path always forwards a pack-
et to its neighbor closest to the destination. In Poincaré we
use the distances between the nodes on the hyperbolic
Poincaré disk as the metric for greedy routing:

(01— 1)’ + (2~ 1)’
d(v,t) = h{1+2
=12 2

If u does not have any neighbor » for which d(,t) < d(u,t)
then greedy routing is in a local minimum and fails. Note
that for example BCube’s single path routing algorithm®
also suffers from such phenomena. To overcome this, BCube’s
routing falls back to BSF search to be able to route when net-
work failures are present. We will see that Poincaré’s struc-
ture ensures such events to happen only in case of massive
network failures and with extremely small probability. The
basic greedy routing algorithm is described in Algorithm 1.

Algorithm 1. Greedy routing algorithm for packets with
given destination node ID.

GreedyRouting (current ID u, destination ID d):
dist_min = Inf
for all i link neighbors of u do
dist = CalculatePoincareDistance (i, d)
if dist < dist_min then
dist_min = dist
next_hop =i
end if
end for
ForwardPacket (next_hop)

In the following it is proven that greedy routing is al-
ways successful on a (1,k) tessellation, in case there are
no link failures in the graph.

Theorem 2. Greedy routing always finds paths between
arbitrary node pairs in an (n,k) tessellation, assuming there
are no link failures in the graph.

Proof. We prove the theorem indirectly. Let P and Q be
nodes of the tessellation, so that Q cannot be reached by
a greedy path from node P. Without loss of generality
assume that greedy routing fails at node A. First, we deter-
mine the neighbor of A that is closest to Q (if there are
more neighbors equidistant to Q, we choose one from
them). Let us assume that this neighbor is D, as shown
on Fig. 6. Then Q must be in the angle range at A bounded

6 A special kind of greedy routing in high dimensional space.

Fig. 6. Greedy routing always finds a path between all node pairs.

by e; and e,, where e; and e, are the angle bisectors of
EADzand DAF/. Let us consider that part of the angle
range, to where there are no greedy paths from A through
D. This is the set of points that are closer to A than D. Let e3
be the bisector of AD. The set of points will be in the area
bounded by ey, e; and es.

We can assume that Q is closer to e; than e,. Since the
lines e; and e3 are symmetry axes of the polygon b, their
intersection C must be the midpoint of b. B is a midpoint of
AD, so Q must be contained by ABCa. Trivially, since AB lies
on the side of b and C is a midpoint of b, this contradicts
our graph generation process, where every node is a vertex
of the tessellation (Q = A).

During the routing steps the next hop is always strictly
closer to the destination according to the greedy routing
rule. This means that a node can be only once on the path
and the path is in the circle with center Q and radius PQ,
and there are only a finite number of nodes in this region,
the path must end at Q. O

The following theorem shows that greedy routing always
finds the shortest paths in arbitrary hyperbolic tessellations.

Theorem 3. Assuming no network failures, greedy routing
always finds shortest paths between arbitrary node pairs in an
(n, k) tessellation.

Proof. We prove this statement in an indirect manner.
Assume that there exist node pairs between which the
length of the shortest path is smaller than the greedy path.
Among these pick the pair (u, v) for which h(u, ) is mini-
mal, where h(u, v) refers to the minimal hopcount between
u and v in the tessellation. Fig. 7 shows the tessellation
from the point of u. Since h(u, v) is minimal the greedy path
must deviate from the shortest path at u. The red and the
blue lines show the shortest and the greedy paths on which
the first node is s and g respectively.
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Fig. 7. The next-hop on the shortest path is also a greedy next-hop.

Due to the reflection symmetry of the tessellation there
is an axis of symmetry S which maps s to g and also
separates’ s and v. Hence there exists at least one intersec-
tion i of the shortest path and S. By symmetry i can coincide
with a node or can be a midpoint of an edge. Let us reflect the
shortest path between u and i with respect to axis S. The
mirror image and the part from i to » of the original shortest
pathis also a shortest path between u and ». Since g resides in
the mirror image it is also a part of a shortest path. This is in
contradiction with our assumption that h(u,v) is
minimal. O

Although the proof above holds for an infinite hyper-
bolic tessellation only, our simulations readily showed that
greedy routing can effectively find the shortest paths on fi-
nite Poincaré topologies, thus eventuating quasi the same
values for average distance and average greedy distance
for the topologies shown in Table 1.

One can note that the simplicity of the control plane is
traded off for the introduced computational requirement
in the data plane. We argue that this is a justified choice
in the design. Since arccosh () is monotone this operation
can be left out of the calculation for boosting forwarding
performance. Hence the required computation at each for-
warding decision is reduced to about a dozen of simple
arithmetic operations which consumes reasonably few
CPU cycles. By default, nodes are required to calculate
the next-hop distances for each packet to be forwarded.
To further improve forwarding performance, routes can
be cached by intermediate switches, and flow labels can
be used for per-flow forwarding decisions. This trade-off
is shown in Section 6 in a working greedy routing environ-
ment. We emphasize that Poincaré retains all advantages of
greedy routing thus there is no link state propagation pro-

7 This is simply because g is closer to » than s also in Euclidean distance,
while u is in the center.

tocol prevalently used in DC architectures. This routing
mechanism does not require carefully adjusted routing ta-
bles and implements routing with in essence zero messag-
ing overhead.

3.2. Low overhead greedy routing extensions

DC specific routing requires many features such as mul-
ticast (to support MapReduce induced traffic load and dis-
tributed storage systems) and multipath routing (for
multipath TCP, error tolerance, VM migration). We extend
Poincaré’s default greedy routing to support the above
mentioned features in a way that maintains the low over-
head and distributed routing operation.

Multicast. For small multicast groups, Poincaré imple-
ments explicit multicasting like e.g. Xcast (explicit multi-
unicast) [26]. Xcast is a very simple multicast mechanism
which works as follows: let [ be a list of destinations a
packet should be delivered to and let this list be contained
in the packet header. When such a multicast packet arrives
to a node, [ is extracted from the header and the next hops
on the shortest paths next(x), Vx €[ are calculated. If for
some uq, Uy, ..., Uy € I, next(uq) = next(u,) = - - - = next(uy) =
n, instead of submitting k packets to n, it is enough to send
just one multicast packet having a modified list ' = {uy,
Uy, ..., U} in its header. Note that next(x) is uniquely
determined by shortest path routing.

In case of Poincaré the situation is a bit different and
gives more space for optimization. This is because in Poin-
caré we can use any of the available greedy next hops. Let ¢
be the node which receives a multicast packet containing
list L. In this case next(x) turns into a set of next hops given
by next(x) = {u|(d(u,x) < d(c,x)}. Putting it differently, as op-
posed to Xcast where next(x) is a unique node, in Poincaré
for each x € | we have a set of next hops. So node c at this
point has the sets next(x), Vx € . Trivially, if node c calcu-
lates the minimal set of next hops ny, n,, ..., n; covering®
all sets in next(x), vx € | then the number of outgoing pack-
ets is clearly minimized.

Since solving the optimal set cover problem is NP hard,
our implementation employs a greedy heuristic to approx-
imate its solution. This means that for a packet with list [ in
its header, from the neighbors of ¢ we pick node u = arg-
max,([{x € [[v € next(x)}|). Now update the list
I=N\{x € lju € next(x)} and repeat the process until | be-
comes empty. Fig. 8 shows the different path selection re-
sults for a source and a two-member destination group in
case of Xcast (left) and greedy multicast (right). In case of
regular Xcast, the forwarding path is split after one hop,
because the packets are sent on the shortest path from
the first hop to the two destinations. It can be seen that
in case of greedy multicast the packet is sent on common
path to both destinations as long as there is a common
greedy routable link (i.e. getting closer to the destination),
hence saving precious link capacity. To speed up multicast
forwarding in a working DC environment, the solution can
make use of the recent implementation of the greedy heu-
ristic function in NetFPGA architectures [27]. The descrip-

8 A node n covers a setsifnes.
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Fig. 8. Multicast modes: Xcast (left) and our greedy multicast algorithm (right). The plot shows links in blue which are used for forwarding multicast traffic.
Xcast splits the common path earlier since it uses shortest paths. Greedy multicast take advantage of all paths that take the packet closer to the destination.

tion of our greedy multicast algorithm is presented in
Algorithm 2.

Algorithm 2. Greedy multicast routing algorithm.

[ = list of destinations, forwardingSet={}
while /! = {} do
Calculate next(x), Vx €|
u = argmax,(|{x € l|v € next(x)}|)
forwardingSet = forwardingSet U u
I=N\{x € lju € next(x)}
end while
ForwardPacket (forwardingSet)

In current data center architectures large multicast
groups are usually supported by introducing state to the
switching fabric. Note that the space-embedded structure
of Poincaré permits the addressing of larger groups by
defining a destination and an offset in the hyperbolic space.
This type of addressing can designate servers whose dis-
tance from the destination is less than the offset value,
hereby succinctly addressing larger network segments.
We leave the implementation of such a multicast solution
for future work.

Multipath. For multipath purposes Poincaré uses the
following simple distributed algorithm: for a new incom-
ing flow, choose the least-loaded outgoing link through
which the packets can reach the destination on a greedy
path. Such a multipath algorithm relies strongly on the
number of edge disjoint paths that can be used by greedy
routing. To measure how many such paths exist between
pairs of nodes in a Poincaré topology G, we generate a di-
rected subgraph G, from G for every d destination. In G4 a
link pointing from u to v exists only if u and v are con-
nected in G and d(u,d) > d(v,d). All link capacities are set
to 1 and the maximal flow on G, is calculated. By applying
the Max-flow min-cut theorem [28] we get the exact num-
ber of link-disjoint greedy routable multiple paths be-

tween s and d. Table 3 shows the outcome of this process
averaged for all source-destination pairs in 1000-node
Poincaré topologies. After only moderate topology up-
grades on average 2, maximally four greedy routable link
disjoint paths are present in our simulated topologies.
For easier positioning the results we note that the corre-
sponding values for fat-tree, dual-homed fat-tree (DHFT)
[13], and BCube are 1, 2 and k+ 1 respectively, where k
stands for the number of BCube levels.

3.3. Failure tolerance

Greedy routing provides a fairly natural way of tolerat-
ing failures. Consider the scenario in Fig. 9 where PC2
sends traffic to PC1. From the coordinates we can compute
the greedy path as PC2-Switch1-Switch2-PC1. If for
example the link between Switches 1 and 2 goes down as
indicated in the figure, Switch 1 notices the failure and
for the next packet received from PC2 the greedy calcula-
tion gives Switch 4 as the next hop, hereby avoiding the
failed link without any global failure propagation and
route recomputation and requiring time only for the detec-
tion of the failure.

In case of link failures it can occur that greedy routing
fails (stuck in a local minimum) however there would be
available non-greedy paths. We will show in Section 5 that
the probability of such events to happen in a Poincaré

Table 3
Link disjoint paths accessible by greedy routing.

Topology Server ports Greedy disjoint paths

Avg. Max. Avg. Max.
(4,10), sy =3.3,1.=3.3 3371 4 2.138 4
(4,10), rsw=3.7,1.=3.3 3.663 4 2.569 4
Fat-tree 1 1 - -
Dual-homed fat-tree 2 2 - -
BCube k+1 k+1 - -
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Fig. 9. (8,4) tessellation with coordinates and our testbed topology.

topology is very low compared to e.g. the disconnection
probability of servers from the fat-tree topology in case
of link failures. Moreover we can exploit the path diversity
of Poincaré to reduce the probability of greedy fails by con-
sidering the following algorithm.

When a source node fails to find its destination with de-
fault greedy routing it can assign a random trajectory
“bias” («) to the next packet and retry the transmission.
Intermediate nodes use this bias to assign weights d to
their neighbors based on their distance d; to the destina-
tion and pick a neighbor with greater probability that has
larger weight. We can easily set up such a probability dis-
tribution and pick a neighbor with probability
p(j) = dj‘/zf"eighb"”df‘. In our simulations in Section 5 set-
ting the number of retries to 10 gives a fair performance.
The failure handling algorithm is described in Algorithm 3.

The effect of the different o parameter values on the
greedy trajectories can be seen in Fig. 10. By setting « to
a very low value the algorithm always favors the shortest
greedy path, while if set to a higher positive value, the tra-

versed routes will be distributed among the many greedy
routable paths hereby avoiding the local minimum. To
completely eliminate the possibility of getting stuck in lo-
cal minima one can use recent improvements of greedy
routing [29] [30], however such techniques notably in-
crease routing complexity.

Algorithm 3. Greedy failure handling algorithm.

FailureHandlingGR (current node u, destination node
t, o):

C = link neighbors i of node u, where d(i, t) < d(u,t)

foralljc Cdo

wlj] = d(j.t)”
end for
_ N — Wil
next_hop = Random <p(]) = Zie(wm>

ForwardPacket (next_hop)

Fig. 10. Path distribution for a source-destination pair in case of single path where o = —100 (left) and multipath where o =1 (right).
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3.4. Addressing

Poincaré uses the hyperbolic coordinates as the ad-
dresses of servers and switches. We need to make sure that
two arbitrary nodes can be surely distinguished by their
coordinates. The coordinates are real numbers which can
be represented in the floating point number representa-
tion. We computed according to the IEEE Standard for
Floating-Point Arithmetic [31], how many nodes can be
safely assigned distinct coordinates in a given tessellation
structure. Table 4 shows the sizes of the different tessella-
tion topologies that can be surely accommodated by the
common number representations. For example, if we use
the binary64 format to store one coordinate, that means
we use 64 bits. From these 64 bits, 52 is used to represent
the significant bits of the number. This lets us to use
5.42 x 10%% nodes with distinct coordinates in the (10,4)
tessellation topology.

During the design of our architecture, we tried to keep
the control plane as simple as possible. By using greedy
routing most of the control plane functions can be omitted.
What we still have to consider is the distribution and
maintenance of node addresses. Addressing in Poincaré,
i.e. mapping hostnames to hyperbolic coordinates, is pro-
posed as the following. In case of small data centers, a cen-
tral directory could hold the hostname-to-coordinate
mappings for all servers, from which servers could look
up and cache the coordinates of the destinations. In case
of large data centers, where a central directory would be
unfeasible, the directory service could be implemented in
a DHT shared among the servers. Whenever a server is
moved to a new coordinate, it can update its address in
the DHT. Servers could also cache the currently used desti-
nation addresses. Similarly to our solution, both DCell [32]
and BCube [8] use 32-bit specific host addresses based on
the position of a server in their respective structure, which
are mapped to IP addresses for applications. Portland [16]
uses a central Fabric Manager that assigns pseudo MAC ad-
dresses for hosts based on their locations in the structure,
and forwards packets based on these layer-2 addresses.
VL2 [17] also uses a centralized and replicated directory
service which resolves application specific addresses used
by services to location specific addresses that are used
for routing.

We emphasize that the control plane in Poincaré does
not require topology information to be distributed and
constantly updated, nodes only have to know the coordi-
nates of their direct neighbors. Also note that all traditional
control plane issues (path computation, guaranteeing loop-
freeness, failure localization, re-convergence from failures,
avoidance of route oscillations etc.) usually implemented
as a routing protocol can be completely omitted when

Table 4
Size of the topology supported by the different sized floating point number
representation for the different tessellation structures.

Type Significant  (10,4) (5,6) (3,16)

Binary32 23 506,000 805,000 85,700
Binary64 52 577 x 10" 157 x 10"*  4.14 x 10"
Binary128 112 499 x 10®° 542 x10%% 9,64 x 10

greedy routing is used. We strongly believe that getting
rid of such complex tasks has made the control plane much
simpler.

4. Structural growth and performance upgrades

One important, albeit under-researched aspect of data
center networks is incremental upgradability, i.e., adding
servers and capacity to the data center on-demand [11]
[10]. Upgrades can be triggered by a growing user base
or deployment of more demanding cloud applications.
Incremental roll-out is also a logical strategy supported
by industry experts [5] and it is standard in practice.
Microsoft’s “Generation 4” data center concept builds
heavily on incremental deployment [33], and Facebook’s
robust capacity expansion was also realized through incre-
mental roll-out [6]. In the former sections of the paper, we
used a heuristic model for constructing the topology of
Poincaré, which was advantageous for the analysis of our
system. One may argue that the heuristic model presented
in Section 2 is not well adaptable to real world situations.
In reality, there are fixed port switches and the servers
have limited port capabilities. Here we show the process
how we can build the structure taking these real world as-
pects of DC equipments into consideration. This section
also discusses how Poincaré satisfies the requirement of
incremental upgradability and describes various methods
for capacity provisioning in a cost optimized manner. The
upgrade process affects only the immediate vicinity of
the newly connected servers or switches, i.e., without
impacting the data center core and main operation. From
a very high level point of view the upgrade process will
be the following: when the topology of a Poincaré architec-
ture is gradually increased, and a server runs out of free
ports and we do not want to or cannot increase its port
count, then this server needs to be shifted towards the
perimeter, and it needs to be replaced by a router with
higher port count.

As we have described before, there are various kinds of
tessellations. The topologies based on the different tessel-
lations have differing topological parameters, such as
diameter and maximal degree. Along the presented analy-
sis of the topological properties one can choose the suit-
able tessellation, which meets the requirements of the
desired DC network. Then the building of the DC can be
started from an arbitrary number of servers and switches,
and can be gradually built out by adding more servers to
the perimeter. The coordinates of the devices can be com-
puted in advance and stored in a directory service to be
used at new server or switch installment. An automatic
coordinate assignment protocol could also be imple-
mented, which would tell newly installed devices their
new coordinates based on the coordinates of their neigh-
boring nodes. Besides this coordinate assignment no extra
configuration is needed to get Poincaré up and running.

4.1. Constructing the base topology

For building a proper Poincaré topology we have to take
care of two things. First, to exploit the advantageous prop-
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erties of a tessellation the main task when growing a Poin-
caré structure is to carefully maintain the base topology.
This is formalized in Rule 1:

Rule 1. After adding a new node to the topology, the links
of the base tessellation topology must be present.

Rule 1 basically means that if there is a tessellation link
between nodes v; and u,, then the devices that are on the
coordinates of #; and 7, must be connected.

Secondly, we need to ensure the correct allocation of
new coordinates in the system:

Rule 2. The position where a new server can be installed is
an unoccupied position having the minimal distance from
the center (0,0). (Ties are broken randomly.)

Note that because of Rule 2 the topology will be
balanced.

Now we can formalize the upgrade process as follows.
We assume that the possible coordinates (x1,y1), (X2,V2),
..., (xn,yn) for the (n,k) tessellation is computed and stored
in a list denoted by L. For the compliance with Rule 2, the
coordinate list Lis sorted according to the distance of the loca-
tion (x;,y;) from the center of the disk (0,0) in increasing order.

Let G (V,E) be a graph representing the current topology
of our DC. Initially G is empty. Let 7,5 be a new server node,
which we want to install into G. We define Pop(L) be func-
tion which returns the first element (x,y) of the ordered list
L and removes (x,y) from L. (x,y) will be the coordinate of
the new node v, Also, let us define a function Erps=
F(n,k,x,y), which returns the set of tessellation links
{¥ns, 1}, {¥ns, 0}, . . ., {tns, 4} Which must be included in G
to meet the requirement of Rule 1. Let p, denote the num-
ber of available ports in server v. The procedure of growing
the Poincaré structure is described in Algorithm 4.

Algorithm 4. Structure growth.

AddServer (G, vys):

Insert new server v,s to coordinates (x,y) = Pop(L) to
meet Rule 2

Try installing links Er,s to meet Rule 1

if 3w, s.t. creating links Er,s would increase the port
requirement of w above p,, then
substitute w with a switch
AddServer (G,w)

end if

connect links Er,s to meet Rule 1

Let |vs| be the number of switches in G after inserting
|vse] servers. One can see that the switches will be on
positions
(Pop(L),Pop(L),...,Pop(L)),

| vsw|times

meaning that they are placed to the |vs, | innermost coordi-
nates of the disk. The severs are placed on the subsequent

(Pop(L), Pop(L), ..., Pop(L))

|vse |times

coordinates.

We demonstrate the build out method in the following
simple example. Let’s say, we build a DC structure based on
the (5,4) tessellation. We generate the coordinate list with
the method described in Section 2.1, which tells us the pos-
sible logical places of the devices. Fig. 11a shows the pos-
sible locations of devices for the 4-pentagon tessellation
based structure with black points.

Now we start assigning physical devices to the logical
places. When a device is installed to a place, the device gets
the coordinates of the location. Suppose for simplicity that
we have the most common DC servers with two ports. We
add one server at a time employing Rule 2, paying attention
to install the base topology links to meet the requirements
of Rule 1. Since the servers’ port count is 2, we can deploy at
most five servers on the first level. As a result, we have a DC
structure with five servers, as shown on Fig. 11b. Note that
the topology on Fig. 11b is consistent with Rule 1.

The first non-trivial situation arises, if we want to install
one more server. It is clearly seen, where we can deploy the
next new server according to Rule 2, shown with red dots
on Fig. 11b. Recall that Rule 2 breaks ties randomly. How-
ever, if we installed one more server anywhere among the
possible places, the required port count of the neighboring
server would increase to 3, which contradicts our assump-
tion of the server port counts. Let’s take out this neighbor-
ing server from the structure, replace it with a switch that
has a higher port count. Let the port count of the switch be
4 that is equal to parameter k, which satisfies the trivial
requirement that the port number of a switch must be
greater than k (otherwise the tessellation cannot be con-
structed). Also, put the removed server back to the struc-
ture according to Rule 2. This process is shown on
Fig. 11c. If there are still servers, whose port count would
have to go higher than 2, then repeat this procedure until
all servers are installed into the topology and they all need
only two ports. After the insertion of four more servers, the
resulting topology can be seen on Fig. 11d. Note if we per-
mit the servers to have four ports then in case of a (10,4)
tessellation, we can build the entire structure with servers.
Now we show how to improve the throughput of the DC by
putting more advanced switches into the inner part of the
topology.

4.2. Performance upgrades

As resource demand is getting higher over time, the
performance of Poincaré can be structurally upgraded by
adding more switching equipment as well. Larger switches
can replace smaller switches in a plug-and-play manner al-
ways resulting in better structural benchmarks. Clearly,
adding links to the inner part of the topology can have lar-
ger impact. With a simple performance upgrade rule we
can assure that a new bigger switch is deployed in a easy
manner:

Rule 3. If a switch is replaced by a new switch with higher
port count ks, the new switch has to be connected to
those k;s, closest nodes, which have available free ports.
Note that unplugging the old switch makes free ports for
the tessellation links, which makes such upgrade confor-
mant to Rule 1.
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Fig. 11. Figure (a) shows the possible locations of devices in a (5,4) tessellation based structure with black points. Figure (b) shows an initial topology with
five severs, and the possible next server locations with red dots. Figure (c) depicts when a server is moved to an outer location on the tessellation and gets
replaced by a switch with higher port count, so the structure can accommodate the new server denoted with the “+“ sign. Figure (d) shows the snapshot of
the growth process with five switches and 10 servers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

There is a possibility that the structure is in a state,
when a new bigger switch cannot be connected to other
switches following Rule 3, see Fig. 12a. In the worst case,
it can even happen that we cannot connect the new switch
to any other device because there are no available ports
that could be used. This step is then regarded as a neces-
sary intermediary step during the upgrade process. How-
ever, the next switch upgrade step will be surely
successful, and new switch-to-switch links can be in-
stalled, as it can be seen on Fig. 12b. We note that the smal-
ler switch, which was replaced can be reused at a outer
location of the structure.

The links that are shown with orange color on Fig. 12
are not tessellation links. These links can be removed
whenever a shorter link could be used as the result of
employing Rule 3. When there are ties between distances

between upgraded devices, these non-tessellation links
can be arbitrarily added/removed following Rule 3 to opti-
mize the overall performance.

We note that if we want to further enhance the connec-
tivity of a given server, the fabric permits this. The only
limiting factor is the available ports in devices in the prox-
imity of the server. Also, usual DC servers come with 2/4
Ethernet ports built-in, and they can be expanded with
port extension cards. Current technological trends show
that a server can have as many ports as 10-12. For exam-
ple, the two original server ports can be increased to 12
with two 5-port extension NIC.

The growing algorithm can be further optimized (in
terms of throughput, cost, etc.) by considering many phys-
ical constraints (server room size, rack placement, energy
availability, A/C) to enhance Poincaré overall performance.
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(a)

(b)

Fig. 12. Figure (a) shows how a 4-port switch is replaced by a 8-port switch to enhance the connectivity and thus the performance of the structure. Since
there are no other free switch ports in the system, it is reasonable to install another 8-port switch as shown on Figure (b) to introduce additional ports to the
system. The orange links are non-tessellation links, these can be easily managed following Rule 3.

These further extensions to the model are considered as fu-
ture work.

5. Performance evaluation

We now turn to analyze Poincaré’s performance accord-
ing to diverse metrics via simulation. First, we describe the
simulation environment and our general traffic scenario.
Next, the results of multipath and multicast performance
simulations are provided and we analyze the inherent fault
tolerance of the architecture.

5.1. Throughput

To evaluate Poincaré’s throughput, we have imple-
mented a simple flow-level traffic simulator in C++, that
simulates fat-tree and Poincaré routing on the generated
topologies. All topologies contain 4000 servers with vary-
ing number of switches and the results are averaged over
10 simulation runs. We adapt a permutation traffic matrix
from [13] where every host sends 10 MB data to another
host, and no host receives more than one flow. This is
implemented in the simulator first by generating the traffic
matrix. The matrix contains the flows (4000 in this case),
source and destination addresses. The routing function
computes the path that the flow will use. This is done for
all flows, and then it is summed, how many flows use
one link. The topology file contains the capacity of each
link, so it can be determined, how much capacity each flow
will use, if we assume fair sharing of bandwidth resources
among the concurrent flows on the same link. The simula-
tor is paced to advance the data transfer in milliseconds. A
flow is active, until the amount of its data is not fully trans-
ferred. We define the aggregate throughput of the systems
as the total shuffled (transferred) data divided by the com-
pletion time of flows.

Table 5 shows the results of the traffic simulation. It can
be seen that there is a trade-off between the number of
switch ports and the incurred aggregate throughput. More
dense the topology is, the higher aggregate throughput it
can achieve. Furthermore the performance of the system
is enhanced by high capacity links in the core. The table
shows three cases for Poincaré; the first is a budget-
friendly topology with few switch ports and few high
capacity links. The second row shows a configuration
equivalent to a similarly sized fat-tree DC in terms of
throughput performance. Finally, we show an enhanced
configuration with a higher switch port count and slightly
more high capacity links. We also indicate the throughput
results for different fat-tree configurations. Although the
latter two configurations represent a notably different cost
(see Section 7), they perform similarly to each other. We
compare the switching cost of the structures similarly as
we did in Section 2.2. Poincaré achieves the same perfor-
mance as fat-tree for only a slightly higher switching costs.

Traffic distribution. In Fig. 13 we show the distribution
of traffic flowing through links for a 1000-node tessella-
tion. The figures show that if the topology is more dense,
then traffic in the middle is distributed evenly across all
core links.

Forwarding burden of servers. In Poincaré server
nodes are also actively participating in routing to ensure
greedy connectedness throughout the system. The defini-
tion of the forwarding burden of a server is the total num-
ber of flows that are routed through a server other than the
flows that are initiated or terminated at a given server. Ta-
ble 6 demonstrates how many external flows need to be
routed through the end hosts in a all-to-all communication
pattern. The numbers in the table are the average of this
metric for all servers in the given network. In a fat-tree sys-
tem server do not participate in the routing fabric. BCube
heavily uses servers switching resources for overall rout-
ing. The forwarding burden metric was calculated for a
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Table 5

Throughput comparison of 4000-server Poincaré and fat-tree DCs with different topology parameters. The columns from left to right: Topology, num. of
switches, num. of 10 Gbps switch ports, num. of 1 Gbps switch ports, num. of 1 Gbps server ports, total switching costs in K$, total aggregate throughput (Gbps),
avg. per server throughput (Gbps), runtime of the total data transfer in milliseconds.

TOpOlOgy ‘SW‘ ‘psw,106| ‘psw.lG| ‘pseJC' K$ Z T T;g t (ms)
(4,10), 15w =3.3, 1 =3.3 640 2400 8048 13,510 2755.8 23991 0.143 1334.67
(4,10), 15w =4.3, 1e = 3.3 640 4700 9898 13,510 3515.8 494.47 0.280 649.33
(4,10), 14y =4.6, re = 3.3 640 7000 8878 13,510 3988.8 558.77 0.364 573.17
Fat-tree (n =28) 980 0 25,952 4000 2995.2 471.91 0.265 680.5
Fat-tree (n =32) 1280 0 36,768 4000 4076.8 473.97 0.265 680.17

Fig. 13. Link traffic distribution in sparse (rs, = 3.3, 1. = 3.3) and medium (s, = 3.5, s = 3.5) 4-decagon topologies.

Table 6
Average forwarding burden on servers for the all-to-all communication
pattern on a 4096 server topology.

DC type Avg. # of external
flows on servers

Fat-tree 0

BCube 13,299

Poincaré (4-decagon, 1y, = 4.3, e = 3.3) 1386.42

4096 server BCube system. Contrarily to the server-based
routing in Bcube, Poincaré imposes only a small forwarding
burden which can be easily managed by hosts without
additional resources.

5.2. Load-balancing and multicast performance

Load-balancing. The simple greedy multipath exten-
sion algorithm is not always able to generate edge disjoint
paths on-demand. This can be regarded as a trade-off for
the minimal overhead requirement of the routing algo-
rithm (and budget friendliness). We demonstrate that the
algorithm proves to be a practical and efficient load bal-
ancing approach. Table 7 shows the throughput simulation
results of the multipath routing algorithm. We use the
same Poincaré topology as in the second row of Table 5.
We choose random pairs of servers in 4000-server topolo-
gies, and send 100 different flows of 1 MB data from the
same source to the same destination. Results are averaged

over 1000 different source-destination pairs. In contrast to
fat-tree, where the bottleneck is the access link speed of
the server, Poincaré leverages the multiple disjoint paths
between the source and destination servers. We note that
Poincaré routing could be also augmented with a multipath
congestion control algorithm for further improvement.
Smart flow management issues constitute important fu-
ture work for us.

Multicast performance. The efficiency of the greedy
multicast algorithm is compared to Xcast in Fig. 14. The
plot shows the ratio of overall link loads when routing
flows to the same set of destinations in case of Xcast and
greedy multicast working modes. A factor of 1.1 means
that 10% less link capacity is used by greedy multicast
when sending to the same destinations.

5.3. Effects of structural failures on greedy search

Here we show how Poincaré copes with random link
and node failures. Fig. 15 shows that the resilience of the
architecture is remarkable in case of realistic link failure
rates [17]. We simulate random link failure events in the
topology (4000 servers, Ts,, =4.3, s =3.3) and measured
the overall success ratio of greedy routing for 50,000
source—destination pairs. The plot also shows the failure
handling feature of greedy search, retrying to find a path
for a maximum of 10 times, which improves routing suc-
cess. To compare the results to fat-tree based topologies,
we also plot the probability of host pairs remaining

Please cite this article in press as: M. Csernai et al., Incrementally upgradable data center architecture using hyperbolic tessellations, Com-
put. Netw. (2013), http://dx.doi.org/10.1016/j.comnet.2012.12.004



http://dx.doi.org/10.1016/j.comnet.2012.12.004

16 M. Csernai et al./ Computer Networks xxx (2013) XXx—xxx

Node Failure Rate

Table 7
Comparison of multipath throughput capability of 4000 server fat-tree and Poincaré systems (Mbps).
Topology Avg. multi. throughput Var Min. Max.
Poincaré fat-tree equiv. 1527.41 406.43 1000 2898.55
Fat-tree (n=32) 1000 0 1000 1000
To] o
- Q
B < |5 (104), 15,=3.7, 1=3.7 <
>‘é 0~ (5,6), rew=4.4, re=4.4 @
A o 4
° A (3,16), rew=5.5, ree=5.5 . 23
e o
o
Q < g o
€ A<
8 2 91
5 g
c 3 «
RORNToY n 9
O O o . .
E = —&— Poinc. 4-decagon - strict greedy
o S |-©- Poinc. 4-decagon - 10 retries
7] o |
© T T T T T T
S 0.001 0.005 0.020 0.050
S
=

1.00
|

T T T T T T T
1 2 5 10 20 50 100
Number of Destinations in Multicast Group

Fig. 14. Multicast algorithm efficiency compared to Xcast.
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Fig. 15. Greedy search and fat-tree search success ratio versus random
link failure rates.

connected in these structures at the presence of link fail-
ures which is an upper bound on the success rate.

In Fig. 16 the greedy search success ratio is plotted for
various rates of random node failure in the topology. It
can be seen on the plots that Poincaré copes with random
link and node failures through graceful degradation.

Note that the results are generated with the strictest
version of greedy search, which fails in a local minimum.
Recently numerous improvements have been proposed to
enhance greedy routing [29] [30], which could be readily
applied in Poincaré to further improve failure resilience.
Also, redundant storage and application-level solutions
can mitigate the effects of failures [34].

Fig. 16. Greedy search search success ratio versus random node failure
rates.

6. Prototype implementation and measurements

In order to demonstrate and further evaluate Poincaré,
we have implemented a prototype in OpenFlow and car-
ried out performance measurements.

The OpenFlow specification [35] aims at enabling net-
work innovation by strictly separating forwarding and con-
trol logic. Forwarding mechanisms including vendor-
specific, proprietary solutions are dedicated to network de-
vices which can be controlled through an open interface by
separate controller entities. Network devices (OpenFlow
switches) forward packets based on matching certain fields
of packet headers with flow table entries while flow tables
are maintained by controllers. In this framework, we have
implemented greedy routing as a novel forwarding mech-
anism added to the OpenFlow reference software switch
v1.0 [36] working as follows.® The flow table of a switch
consists of one entry for all ports storing the coordinates
of the corresponding neighbor and an additional one
describing its own position. We use the destination MAC
field in the packet header for storing coordinates and the
forwarding mechanism takes this single field into account.
As the OpenFlow reference switch requires, we store greedy
rules in the linear flow table (wildcarded rules). Instead of
standard matching, greedy forwarding calculates the dis-
tance between destination node (coordinates from incoming
packet) and all neighbors (coordinates from flow entries),
and finally, the entry with the minimum distance is chosen
(match) and its action is executed. This means that the pack-
et is forwarded to the closest neighbor or dropped when no
closer node can be found. We emphasize that this forward-

9 Sea also a downloadable OpenFlow implementation of greedy routing
in [37].
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ing mechanism results in a fixed size flow table bounded by
the port number plus one. We note that the applied opera-
tions realizing greedy forwarding are computationally feasi-
ble in real switches. In addition, we use NOX v0.9.0 [38] as
OpenFlow controller which plays a role only in the bootstrap
phase; a special greedy application has been implemented in
order to add flow entries to switches based on topology
information.

The basic greedy forwarding mechanism can be en-
hanced by caching active flows in a hash table. This
improvement yields faster forwarding (after the first pack-
et, the standard exact matching is applied) at the cost of in-
creased flow tables and memory usage. Both greedy
forwarding methods, basic and enhanced, have been
ported into OpenWRT [39] firmware (trunk version, bleed-
ing edge, r26936) operating on TP-Link TL-WR841ND com-
modity switches.!® In order to handle link failures, a
lightweight greedy daemon has been implemented detect-
ing link up/down events.'" In case of link failure, the corre-
sponding greedy flow entry is deleted by the dpctl tool
through the local control interface of the switch, while link
up event causes the restoration of the entry.

Our testbed environment consisted of the aforemen-
tioned TP-Link switches with 4 +1 ports, PCs (Intel Core
i3-530 CPUs at 2.93 GHz, 2 GB of RAM, running Debian
GNU/Linux Squeeze with kernel 2.6.32-5) and a NOX
v0.9.0 OpenFlow controller operating in out-of-band con-
trol mode on a separate management network.

Fig. 17 shows the results of simple performance mea-
surements between two hosts connected to a single TP-
Link device running different versions of OpenFlow switch.
Throughput has been measured by iperf for both UDP
and TCP (Cubic) traffic. We analyzed how much the calcu-
lation involved in greedy forwarding degrades perfor-
mance compared to standard flow based techniques. For
positioning the results of Fig. 17 we note that we use Open-
Flow reference switch (software switch) in OpenWRT.
Actually, we have software switches running on TP-Link
devices. This software switch is running in user space. Fur-
thermore, this device has a low-performance, quite “slow”
CPU. Due to these facts, it is important to analyze the per-
formance of the standard reference switch in this environ-
ment. We use the switch application of the NOX controller
in cooperation with this standard switch and the through-
put performance of the corresponding scenario is shown in
Fig. 17 with label 'NOX OF switch’. This result can be con-
sidered as a reference, and the performance of our greedy
forwarding implementation is compared to this value.

On one hand, performance of the enhanced version of
greedy forwarding (with caching) is very similar to the
standard switch application implemented in NOX. In both
cases only the first packet suffers from increased delay.
In case of the standard OpenFlow switch, the controller-

10 This TP-Link model requires some modification in the firmware, more
exactly the MAC learning function has to be disabled in the kernel driver of
the switch (ag71xx_ar7240.c), and an extension is also necessary for correct
port status detection.

1 Current version of OpenFlow uses LLDP for link state detection which is
implemented in the controller. Therefore, this approach can be used only
for small networks, and according to our experiments, the minimum
timeframe is around 4-5 s even in very simple testbeds.
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Fig. 17. Performance on a single switch.

to-switch communication (packet in, flow mod) causes
the delay, while in case of greedy forwarding, the greedy
next-hop calculation induces additional operations for
the first packet. This shows that leveraging some of the
control plane functionality into the data plane is supported
by our measurements.

On the other hand, the basic greedy algorithm, which
calculates distances for all packets, shows 10-20% perfor-
mance degradation depending on the number of flow en-
tries. The basic greedy implementation calculates the
distances for all neighbors, thus, the performance is af-
fected by the current number of neighboring nodes (which
of course determines the number of flow entries). Here, we
investigate the performance for two and four neighbors
(three and five flow entries), respectively. On Fig. 17 the
throughput of a switch with three and five entries are plot-
ted. It should be emphasized that the switch is able to
operate with fixed size flow tables at the cost of only a
moderate performance degradation, even in case of our
low-end COTS device with very limited computational
power. Note that this implements a trade-off between
the flow table memory requirement of switches and the
performance of forwarding.

Furthermore, we have built (a relevant subset of) a Poin-
caré topology. The testbed topology consisting of four
switches and two hosts (and a NOX controller) is shown
in Fig. 9. In this network environment, the link failure
recovery mechanism of Poincaré is demonstrated. PC2 gen-
erates UDP traffic to PC1 at a constant bit rate and the
incoming packets with timestamps are logged at the recei-
ver and plotted in Fig. 18. At 7.1 s the indicated link on the
original greedy path is unplugged (link failure), thus PC1
cannot receive packets. The greedy daemons running on
Switches 1 and 2 detect the link-down event and Switch
1 updates its flow table to the alternative path via Switch
4. This strictly local failure recovery mechanism achieves
on-demand flow rerouting within 1 s with zero communica-
tion overhead: flow restoration only depends on the speed
of link event detection.
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Fig. 18. Failure recovery.

7. Cost considerations: cabling, initial rollout and
expansion

7.1. Cabling

A practical and economical requirement of data center
designs is to exhibit reasonable cabling complexity. Poin-
caré achieves this by implementing the locality of the
edges since it connects nodes that are close in the hyper-
bolic space. If we use an (n,k) tessellation as a minimum
topology, the following arrangement hints at low cabling
complexity. Form k rows of racks each containing one top
level t; switch and the servers and switches to whom ¢; is
the closest among the k top level switches. In this case
most of the cables reside in one row since it can be shown
that only O(logn) edges are ‘“‘cross-row” edges, and hence
easier to implement [40]. Similarly racking servers and
switches based on space proximity should result in a mod-
erate cabling burden.

7.2. Initial rollout and incremental expansion

As it was previously shown in Section 4 Poincaré is well-
suited for starting small and upgrading incrementally. As
for an initial build-out, a Poincaré-based data center can
be constructed of any reasonable number of servers and
switches of arbitrary port count. This flexibility enables
start-ups and other budget-conscious companies to restrict
their initial investment (low CAPEX). To put Poincaré in a
cost perspective, we performed a cost comparison with
the dual homed fat-tree design. Our cost model is based
on [24] using regular ($100) and high capacity ($250)
switch ports, and also server ports ($100) as our main cost
elements. The cost of cabling is also taken into account.
Based on the number of servers, we can estimate how
many racks we need for a specific system. We consider
10% of all cables as inter-rack cables ($50 each) and the rest
as intra-rack cables ($10 each). Also we consider the labor
cost of cabling, and add $300 for every first cable between
racks. We find that cabling costs are marginal in compli-
ance with [24]. Suppose that a start-up wants to build a
private DC based on a fat-tree structure, starting with
500 servers. We considered two scenarios: (a) minimum
entry cost and (b) easily upgradable system for the foresee-
able future with a larger initial CAPEX. We assume that up-
grades are incremental and continuous over time. Fig. 19
shows the total cost of the company’s DC while expanding

from 500 to 8200 servers. It is shown that by starting with
a small sized fat-tree topology (n = 16) the incurred entry
cost is low. However, when reaching maximal tree size
(1024 servers), the DC requires a structural reconfiguration
of changing every switch in the system. This means that
the next upgrade could cost the same as the whole system
did until this point. On the other hand, a larger initial fat-
tree could pose prohibitive entry costs for a small com-
pany, as high as double or triple of the smaller, but equal
performance tree. Moreover, this larger tree would also
reach its ceiling (note the jump after 8000 servers).

We compare the two systems such that we generated
fat-tree topologies with 500, 1000, 2000, ..., 8000, 8200
servers. The throughput was measured on these topologies
as described in Section 5. Then Poincaré topologies with the
same number of servers were generated and the parame-
ters of the system were manually adjusted in every net-
work size instance, so that the throughput would be the
same as in case of the corresponding sized fat-tree topolo-
gies. The cost of the two systems were calculated and
interpolated. The results can be seen on Fig. 19.

The two lines corresponding to Poincaré show (a) the
minimum amount of money needed to build a working
system and more importantly and (b) a system that is
equivalent to a fat-tree system in terms of throughput. In
the first case the initial DC has a very low entry cost, and
it can be smoothly upgraded in small increments. In the
second case, the Poincaré DC, that achieves the same
throughput as fat-tree, can be built with lower entry cost
and stays cheaper than or at worst comparable to its fat-
tree counterpart.

8. Related work

Recently hyperbolic geometry is gaining more focus
when it comes to explaining the intricate structure of real
world complex networks [21] [41] and designing networks
with extreme navigational properties [42] [43] [30]. More-
over, the hyperbolic embedding of the AS-level Internet
topology has been computed to illustrate the effectiveness
of the hyperbolic space in real routing situations [44]. How-
ever, current proposals for generating networks embedded
in the hyperbolic space cannot be directly used in data cen-
ters. Poincare’s structure is inherently symmetric as op-
posed to the above mentioned hyperbolic growing
models. The symmetric topology lends itself to easier con-
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Fig. 19. Comparison of total cost for fat-tree and Poincaré DCs while
adding servers incrementally.

figurations not just in terms of cabling simplicity, but also
plug & play configuration; neighbors are able to calculate
the coordinates of a newly joined node just from seeing
which interface the newbie is connected to. Putting it dif-
ferently, the operating crew of the DC can focus on the sim-
ple and symmetric topology the rest is handled by Poincare.
To compare this with other hyperbolic embeddings, in
those cases the newcomer must propagate its randomly
chosen coordinates to the rest of the system and the crew
of the DC must carefully check, which other nodes they
should connect the newly attached node. This means that
the crew has to be aware of the complete algorithm running
behind the DC’s topology.

Poincare’s topology can operate and provide 100% gree-
dy success rate by using switches with limited number of
ports. In Theorem 2, we prove that using a tessellation
100% greedy success is analytically guaranteed. If we con-
sider for example the 4-decagon topology, this comes with
switches having a port limit of 4. The existing hyperbolic
embeddings are to the contrary. For example, to generate
a topology of [21] with a low maximal node degree, the y
parameter needs to be set relatively high. However, greedy
routing performs worse, in terms of success ratio, on net-
works with higher y values. More importantly, Poincare
provides 100% greedy success rate by using only strict
greedy search. This means that no additional mechanisms
are used for search besides the simple greedy routing pro-
cedure. The topology proposed in [21] can guarantee 100%
success rate by applying non-trivial tricks (gravity-pres-
sure routing, face routing) to find a path, when greedy
routing fails in a local minimum. Note that Poincare can
also be augmented with these routing tricks. By doing so,
we can get a much more robust DC system. However, from
the point of analysis, strict greedy routing seems to be the
only setting for which analytical proofs can be derived.

Several data center architectures have been proposed
recently. Data centers based on fat-tree topologies
[20,17,16] are built using commodity switches arranged
in three layers, namely core, medium (aggregation), and

server (edge) layers. The structure is also known as Clos
topology. Portland [16] is a scalable, fault tolerant, but
complex layer-2 data center fabric built on multi-rooted
tree topologies which supports easy migration of virtual
machines. VL2 [17] is an agile data center fabric based on
end-host routing with properties like performance isola-
tion between services, load balancing, and flat addressing.
The topology of BCube [8] is generated using a recursive
algorithm. BCube is intended to be used in container based,
modular data centers, with a few thousand servers.
MDCube proposes a method to interconnect these contain-
ers to create a mega-data center [9]. An initial design of an
asymmetric, scale-free network inspired data center struc-
ture was proposed in [45].

The above designs are not geared towards incremental
upgradability. The LEGUP proposal tackles the problem of
expanding some existing data centers, adding heterogene-
ity to Clos networks [10]; however, its performance for
small upgrades is unknown, as is the impact of the added
heterogeneity on routing performance. Jellyfish suggests
to use random networks as underlying topology [11]. Due
to the random structure, incremental expandability of a Jel-
lyfish DC is adequate. However, since Jellyfish uses a ran-
dom graph based topology, it needs a sophisticated
routing protocol to keep the system running in a fairly effi-
cient way. Jellyfish’s k-shortest-path routing has to monitor
the topology continuously, converge swiftly to a changed
state in case of failures, avoid oscillation and loops, etc.
For this end, an up-to-date, global database has to be kept;
this results in an unfavorable and possibly intolerable over-
head in case of a fairly large data center. Poincare’s strength
in this context is that it both (a) has a symmetric, easy to
manage topology and (b) uses only local decisions in rout-
ing and failure handling resulting in zero messaging over-
head. To sum it up, Poincare’s control plane is
significantly simpler and scales better than Jellyfish’s. A
similar argument holds in the case of REWIRE [12], as well.

9. Conclusion

In this paper we introduced Poincaré, a data center
architecture embedded into the hyperbolic plane. Poincaré
uses greedy routing to forward packets between any pair
of servers and due to its topological properties always
routes along optimal paths. Moreover Poincaré’s routing re-
lies only on local decisions and does not require compli-
cated routing tables to be stored and sweaty routing
protocols to be run. We showed that in the hyperbolic
space greedy routing effectively exploit network redun-
dancy which bards Poincaré with excellent failure toler-
ance and recovery. Our extensions of greedy routing
provides multipath and multicast possibilities hereby
boosting one-to-one and one-to-many communication
performance. Satisfying our basic requirement Poincaré’s
structure and performance is easy to upgrade and can be
done with arbitrary granularity, servers can be added
one-by-one and every single link improves performance
without additional configuration. Our feasibility analysis
indicates that Poincaré provides comparable throughput
in comparison with fat-tree topologies and its flexibility
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enables to start from a very cheap but working DC and
incrementally upgrade to any desired performance level,
hereby significantly lowering entering costs.
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