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Abstract—Current trends in cloud computing suggest that both There are two orthogonal requirements for a data center
large, public clouds and small, private clouds will proliferate  design to suit both the needs of small-and-starting andelarg
in the near future. Operational requirements, such as high and-evolving data centers. First, such a design should be

bandwidth, dependability and smooth manageability, are shilar
for both types of clouds and their underlying data center structurally upgradablea small company should be able to

architecture. Such requirements can be satisfied with utiiing Start a private data center quickly and with a limited budget
fully distributed, low-overhead mechanisms at the algoribm and build it out incrementally in small quanta [4]. Note that

level, and an efficient layer 2 implementation at the practial even if servers are co-located at a data center provider,sSME
level. On the other hand, owners of evolving private data Celers il have to face increasing costs as the number of servers

are in dire need of an incrementally upgradeable architectve . on th ther hand d Iso f "
which supports a small roll-out and continuous expansion in 'MCr€ases. On tne other hand, upgrades are aiso frequently

small quanta. In order to satisfy both requirements, we promse needed in large data centers, triggered by a growing user
Poincarg a data center architecture inspired by hyperbolic base (private, e.g., Facebook) or deployment of more demand

tessellations, which utilizes low-overhead, greedy routg. On ing cloud applications and getting more corporate custemer
one hand, Poincaré scales to support large data centers with (public, e.g., Amazon). As a well-known real-world example

low diameter, high bisection bandwidth, inherent multipath and . et
multicast capabilities, and efficient error recovery. On the other Facebook has upgraded its data center facilities frequend

hand, Poincaré supports incremental plug & play upgradability ~ Step-by-step [5], resulting in a doubling of servers over th
with regard to both servers and switches. We evaluatdoincaré course of 7 months in 2010 [6]. With most designs providing

using analysis, extensive simulations and a prototype imptmen- mechanisms only for large-scale expansion [7] [8], littlerkv
tat:(:]géx Terms—data center, incremental upgrade, hyperbolic has been already done regarding incremental upgradaiility
tessellation, greedy routing, aistributed operaﬁ)t?on, s’cmgipl)ity data centers. LEGUP [9] Ieverages hardware heterogereity t
reduce the cost of upgrades in fat-tree based data centers.
Jellyfish [10] and REWIRE [11] propose a nhon-symmetric
topology to facilitate upgradability of data centers; hoes
Cloud computing has been emerging to be the dominahky sacrifice structure creating a significant challengéHfeir
operation model of present and future networked serviges.future routing mechanism and performance upgrades.
order to provide the underlying pervasive networking func- Second, the respective data center design shouldplee
tions, data centers have to scale up to previously unsesionally scalableproviding performance, dependability and
proportions. Tens of thousands of servers is already then nomanageability for tens or hundreds of thousands of network
for large providers, and this number is predicted to gromodes. On the network algorithm level, this implies disttéal,
significantly over the next few years, as services, storage,low-overhead mechanisms both for routing and failure han-
well as enterprises and users are increasingly relying en tifling. On the implementation level, due to both virtualiaat
cloud. Factor in virtualization and we are easily in the mngand network management reasons, data centers are often
of a million virtual end points. In parallel to migrating tomanaged as a single logical layer 2 fabric. On the other hand,
huge, public clouds, another trend is gaining momentumemdraditional LAN technologies do not scale well to the size of
and more organizations decide to consolidate their comgutilarge data centers. Network layer techniques, such as large
resources into small- or medium-scale private clouds [fprwarding tables, loop-free routing, quick failure ddien
There are multiple reasons behind the surge of private sloudnd propagation, etc. are needed to be realized utilizidg on
First, security and privacy issues using a public infragtite  switch hardware. Recently proposed solutions, such as TRIL
can be prohibitive for certain organizations, such as goft2], SEATTLE [13] and Portland [14], address these issues
ernments [2]. Second, private cloud operation policies amal a certain extent, but they come with a cost of significant
management procedures can be tailor-made to the own&dsnplexity at the switch/fabric control plane. Other atebi
liking [1]. Finally, of course, cost is always a decidingt@ac tures, like BCube [7] and VL2 [15], rely on servers routing
surprisingly, operating a private cloud could be advarage to overcome this limitation. While certainly a worthwhile
in the long(er) run [3]. As a consequence, the increasimgpproach, with the advent of computation-intensive cloud
proliferation of both small and large data centers are Kighservices and the migration of vast online storages into the
likely. cloud, coupled with the cloud providers’ economic inceesiv

|. INTRODUCTION



to run their servers close to their full capacity [16], welsg interconnection structures has to be carefully maintaized
that servers may face resource constraints if being the mametimes completely replaced and rewtréal keep up with
responsible also for routing. the number of servers. Such complete rewiring in fact mean
In this paper we propod@oincalg, a data center architecturethe building of a new DC from scratch. LEGUP [9] addresses
which is by design structurally upgradeable and operalipnathis issue by allowing for heterogeneous switches; yets it i
scalable. The topology oPoincat is inspired by hyper- only suited for large upgrades and relies on higher layer
bolic tessellations, providing incremental expandapidind mechanisms for performance.
favorable performance characteristi€®inca® uses a fully  Since we requird®oinca to be incrementally upgradeable
distributed, low-overhead, greedy routing algorithm édfitly total rewiring is unacceptable. Thus we must need an archi-
utilizing the features of the topology. Such a lightweightecture which camreserve its inherent structuregardless of
routing mechanism can be fully implemented in layer 2, whilghe number of servers and still provide path diversity arghhi
keeping both the control and the forwarding plane simpleat tthroughput. In the following we design a topology inspired
same time, enabling a data center built out of cheap netwdsk tessellations embedded in the hyperbolic plane exhibiti
equipment. The main benefits Bbinca€ are threefold. First, structural similarity with trees [19]. A tessellation care b
Poincaré's hyperbolic structure provides analytically provablénterpreted as an augmentation of the tree structure inhwhic
low network diameter and high performance greedy routinthe branches are connected and can exchange traffic without
multiple short paths between arbitrary nodes and high Hiffecting the core.
section bandwidth. Secon®pincat€'s greedy routing mech-
anism harness the aforementioned structural charaaterisp. The basic topology oPoincaré hyperbolic tessellations
while allowing for natural local failure handling within ifa - . . , .
ure detection time and low-overhead multipath and multicas As a minimum underlying topo_IogPompate cont_{;un_s a
routing. Finally, Poinca supports incremental plug & play regular tessellation of the hyperbolic plane in the Poiachsk

upgradability with regard to both servers and switches,lewhimOOIeI [20]. d“t1 tr:;]s mocie(lj_thke $0|ntz of thel hytperbol:li_%lnane
enabling a small initial rollout and a flexible, budget-coiosis are mapped to the unit disk. THe, k) regular tessellati

way of data center expansion. We justify our design wit ses regulan-gons from whichk meet in a given vertex to

analytical proofs and extensive simulations augmented b 'éthe h%per?r?hc pI?ne W']fhthno 0\|/erlaps and r;jo gapsd Itfh
prototype implementation and testbed experiments. we consider the vertices of the polygons as nodes, an N

. : . .sides as links, we have a regular topology embedded into
The rest of this paper is structured as follows. Section-| e h bolic ol Ei 1 sh fat.tree topol d
troduces théoincaie data center structure based on hyperbollgIe yperbolic piane. Figure .. snows a lat-tree topology an

tessellations. In Section 11l we present our greedy gedg'aapa (5,4) tessellation with similar topological parameters. As

routing algorithm is along with its multipath, multicastdan It le!ls'(tj):" ‘T’.?]?(Vgntopzngﬁa'ens éotlﬁ;?f% (L?)aert]\/vzgic‘t‘lrveelyorlg‘hzc)? a
error recovery extensions. The incremental structural aﬂebe ! ! X g ' g

: . - ssellation without affecting the core. This propertyl#das us
performance upgrade process is carefully described mdBectt use a fixed size core (as opposed to fat-tree’s variabdel siz
IV. In Section V we thoroughly evaluate the performance of ( PP

Poincaié via simulation. Section VI introduces ttepincae o' when upgrading to larger core switches) and implement

prototype implementation and provides testbed experiment Inlg;teemde;tt?;fsfin;]eera?nn?apegl?;r::a;ﬁteolj;?{?:f?jslzggzrffge w
sults. Section VIl presents practical considerations diicg, 25 de f ttl {000l b d a basii . tl | : ith
initial rollout and expansion costs. Finally, related wask node fat-tree topology and a basioincale topology wi

described briefly in Section VIII and the paper is concludqscelmllalr topological parameters (average degree, average p

: . ngth).
in Section IX. ) , )
The coordinates of the nodes for a given k) tessellation
Il. STRUCTURE A TRIP TO THEHYPERBOLIC SPACE can be easily computed by implementing simple geometric

A tree is a very cost effective interconnection structuremwh mappings in the hyperbolic plane (see for example [21] for

routing has to be solved on a population of network nodes. Java code) for arbitrary network size. The derived cootéma

k-ary tree can provide low diameter (low delay), low averagi!ll Point to the logical places of servers and switches, and
degree (low cost), easy loop-detection and simple routi@%ﬁo the link positions. Using the tessellation as a map we

decision in the nodes [17]. Such compelling propertiesitual n grow Poincaié bV_P'aCi”Q SErvers and syvitches to the
PPES unoccupied node positions starting from the inner part ef th

trees to be utilized in an array of routing protocols (STPPG; s ) . . .
ISIS) and, more recently, in data centers. On the negat%se”at'on' The detailed growth algorithm is introdudéed

side, trees cannot ensure path diversity and high throughpeection 1V- _ _ _
two key requirements for data centers architectures. Rigcen SUch @ tessellation topology immediately possesses com-

several augmentations of trees have been proposed to oP&lling properties. In the sequel we prove that the diamefter
come these limitations by densification (e.g., Clos netsprk
1When the arity of the tree has to be increased.

roviding multiple paths, large bisection bandwidth and no
p. | g. f fp il P 8, 9 d back of 2As opposed to Euclidean tiling there existra, k) tiling on the hyperbolic
single point of failure [1 ] [15]' A common drawback o Sucr})Iane if £ + 1 < 1 pecause on the hyperbolic plane the angles of a regular

n

approaches is that when expanding the DC these “embeddeddn could be arbitrary small
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Fig. 1: Link traffic distribution in case of all-to-
all traffic in (left) fat-tree and (right) tessellation

structures.

Fig. 2: The Iayérs of the recursionFig. 3: The n
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is shown with different colors.  est path is also a greedy next-hop.

such a network grows logarithmically with the network siz8. Performance topologies

while the degree of the nodes is boundediby

Theorem 1:The diameter of thén, k) tessellation grows
logarithmically with the nhumber of nodes.

To boost the performance of a givEincare topology we
can add more links between our nodes without any restraints,
hereby improving topological (diameter, average hop dista

Proof: Denote the number of polygons and vertices Oﬁnd operational properties (error tolerance, multipathi)-m

the "perimeter” of then-th level withp,,, andv,,, respectively
(see Fig. 2). For anyt > 3, p;+1 andv,,+1 can be calculated
from p,, andw,, according to the following recursion.

Unt1 = (M —=3)vm +(k=3)(n—2)vm — (0 — 2)pm
Pm+1 = Up+ (k - 3)Um — Pm
Solving the recursion we get:

vm) _ [((k=2)n—2)—1 —(n—-2)\" (v
o) = (727 ) ()
Let M be the matrix of the recursion, theW™ can be
written asM™ = QA™Q ™!, where( is the matrix of the

eigenvectors of\/ andA is a diagonal matrix whose nonzer
elements are the corresponding eigenvalues. In our case

V(Z—2)2-4-z —Z—/(Z—2)2—4
Q = o 2(k—2) - 2(k—2)
Z—-2—/(Z-2)2-4
A = - 2z 0
B 0 Z—24+/(Z—2)2—4

2
whereZ = (n—2)(k—2). Hence by usingy, = n andpy, = 0
we get
(Z-2-Y)(Y-2)—(Z-24Y)" (Y + 2)
21+my
~n(Z-1)"=n(n-2)(k-2)-1)"
whereY = /(Z — 2)?2 — 4 and the last step is due H~ Y.

For the special case = 3

Um =N

Umt1 = (k—4)vm — V1.
Let \; » be the solutions of equatiatf — (k—4)r+1 = 0,
thenwv,, can be written in the following form:
Um = aA]" + bAY,
wherea and b can be calculated from; = 3 and vy, =
3(k — 3).

Since the number of vertices grows exponentially with t
number of levels, the diameter is at m@8in + 1)% which
completes the proof. [ ]

ticast, throughput). For evaluation purposes we define the
following simple algorithm to produce a family of graphs
by adding more links: take a tessellation and a raeiuand
connect the nodes whose distance in the hyperbolic space is
less thanr. This way link locality is preserved hereby mod-
erating cabling costs. Table | presents how the charatiteris
of the topology is enhanced by adding more and more links
for three types of 1000-node tessellations. We note that our
simple algorithm increases the average degree by largdauan
but we emphasize that link additions can be done with aryitra
granularity and using diverse algorithms to make the best ou
0of a fixed budget.

r [Avg. deg/Max. deg]Avg. dist.[Diamete
sparse | 3.5 4.09 16 5.20 7
16-triangle | medium | 4.8 6.27 32 4.29 6
dense | 5.5 9.26 64 3.70 5
sparse | 3.3 5.96 20 5.14 7
6-pentagon| medium | 4.2 8.15 34 4.26 6
dense | 4.4 10.9 51 3.79 5
sparse | 3.2 6.5 20 4.97 8
4-decagon | medium | 3.3 7.59 24 4.52 6
dense | 3.7 9.86 36 4.22 5

TABLE I: Tessellations with different (n, k) parameters.

C. Comparison of DC topologies

Table Il presents the properties of 4000 serfeincaie
topologies with corresponding fat-tree and BCube strastur
One can see th&oincai€ is comparable with the widely used
fat-tree and BCube topologies in terms of diameter, average
path length and bisection bandwidth, while using less $wic
Current technological trends allow us to depend on larger
switches (in the range of 100-150 pdijtas the price of such
switches grows only linearly with the number of their ports
[22]. Also note that due to its heavy-tailed degree distidyu
Poincare uses only a small numbet () of large switches as

hit can be seen on Fig. 4.
e

3VL2 for example uses at least 40-port switches for a 4000esebC
topology.



the shortest and the greedy paths on which the first node is
and g respectively.

Due to the reflection symmetry of the tessellation there is
an axis of symmetrys which mapss to g and also separafes

0.20 0.50

Frequency

-—8— 4-decagon sparse
--&- 4-decagon medium

8 4~ 4-decagon dense T s andwv. Hence there exists at least one interseciiaf the
1 2 5 10 20 shortest path and. By symmetry: can coincide with a node
Degree or can be a midpoint of an edge. Let'’s reflect the shortest path

Fig. 4. Cumulative degree distribution of the different dign

. betweenu andi with respect to axisS. The mirror image
4-decagon topologies.

and the part from to v of the original shortest path is also a

DC Type SwitchegDiam.[Avg. dist[Max. deg| Bis. bw. shortest path between and v. Sinceg resides in the mirror

g?:t‘geg@ = i8)2) ?22 g ggg fg ggg;-? image it is also a part of a shortest path. This is in conttatic
ubeq=16,k= . . . . . L

Poincaré (4-decagon)| 640 | O 785 3 —3347 with our assumption that(u, v) is minimal. [ |

] _ ] ~Although the proof above holds for an infinite hyperbolic
TABLE II: Topological comparison of different DC topologie  tegsellation only, our simulations readily showed thaiedse
[Il. ROUTING: GREEDY GEOGRAPHICROUTING routing can effectively find the optimal paths on finite and
Poincaré routes greedily on the geographic coordinates ¢ipgradedPoincae topologies, thus eventuating quasi the same
nodes in the tessellation. In this section we present thie bagalues for average distance and average greedy distantrefor
routing mechanism and prove its performanceRminca’s topologies shown in Table I.
structure in an analytical manner. Simple yet efficient iult Since arccosl) is monotone this operation can be left
path and multicast algorithms are also proposed, which batht of the calculation for boosting forwarding performance
leverage and enhance the greedy routing paradigm, andrsustience the required computation at each forwarding decision
the low overhead operation manner. is reduced to about a dozen of simple arithmetic operations
) i which consumes reasonably few CPU cycles. By default,
A. Basic mechanism nodes are required to calculate the next-hop distancesfdr e
In greedy geographic routing, by default, the routing meclyacket to be forwarded by the intermediate nodes. As it is
anism doesn’t require routing states to be kept in the swigch shown in Section VI in a working greedy routing environment,
fabric. The routing decision is solely based on the metriputes can be cached by intermediate switches, and flowslabel
distances between the link neighbor nodés;, v2) of u and can be used for per-flow forwarding decisions. We emphasize
the destination node(t;,t2). An intermediate node on thethat Poinca retains all advantages of greedy routing thus
forwarding path always forwards a packet to its neighb@ere is no link state propagation protocol prevalentlyduse
closest to the destination. IRoincae we use the distancesin DC architectures. This routing mechanism doesn’t reguir
between the nodes on the hyperboRoinca® disk as the carefully adjusted routing tables and implements routiriity w
metric for greedy routing: in essence zero messaging overhead.
2 2
d(v,t) = arccosl-(l +2 (v — f) 2+ (v2 — t2) )
(1 —vi—vd)(1 -] —13)
If u does not have any neighberfor which d(v,t) < d(u,t) DC specific routing requires many features such as multicast
then greedy routing is in a local minimum and fails. Note thgto support MapReduce induced traffic load and distributed
for example Bcube'’s single path routing algorithatso suffers storage systems) and multipath routing (for multipath TCP,
from such phenomena. To overcome this, Bcube’s routing faérror tolerance, VM migration). We exteribincai€'s default
back to BSF search to be able to route when network failurgeeedy routing to support the above mentioned features in a
are present. We will see thBbinca's structure ensures suchway that maintains the low overhead and distributed routing
events to happen only in case of massive network failures amypleration.
with extremely small probability. Multicast. Forsmall multicast groupgPoincat€ implements
Theorem 2:Assuming no network failures greedy routingan Xcast-like [23] mechanism where all destination address
always finds optimal paths between arbitrary node pairs in are stored in the header, and a packet is sent only once throug
(n, k) tessellation. a link for a given set of destinations. When common path
Proof: We prove this statement in an indirect mannetowards all destinations cannot be maintained, the mslica
Assume that there exist node pairs between which the lengffoup is split, the headers are rewritten and the packets are
of the shortest path is smaller than the greedy path. Amofigwarded through different links accordingly. To redube t
these pick the pairy, v) for which h(u, v) is minimal, where volume of traffic, the routing mechanism in the nodes can be
h(u,v) refers to the minimal hopcount betweenandv in traced to the well known set cover problem, i.e., there is a
the tessellation. Figure 2 shows the tessellation from tietp multicast group (set), and we want to cover these destimstio
of u. Sinceh(u,v) is minimal the greedy path must deviateby as few outgoing links as possible. As opposed to Xcast
from the shortest path at. The red and the blue lines show

5This is simply becauseg is closer tov thans also in Euclidean distance,
4A special kind of greedy routing in high dimensional space. while w is in the center.

B. Low overhead greedy routing extensions



. . . Topolo: Avg. server ports (Max)| Avg. greedy disjoint paths (Max
which can rely only on poor diversity of shortest path-,4_§ecag%n Sparse 2 3_371p(4) Mgl Avg. 9 2_1313 (4)p (

Poincaré leverages the abundance of greedy routes for a giveA-decagon dense] 3.663 (3) 2.569 (4)
multicast group. It means that there are numerous greedyABLE Ill: Number of greedy routable link disjoint paths.
routable next hop neighbors towards a given destinatiod,
an intermediate node can chose a lower number of links ) ) ) )
send a multicast packet out on. Our implementation employs aGreedy routing provides a fairly natural way of recovering
greedy heuristic to solve the set cover problem. Figure Sshoffom failures. Consider the scenario in Fig. 6 where PC1
the different path selection results for a source and a twdgnds traffic to PC2. From the coordinates we can compute
member destination group in case of Xcast (left) and greelf}f 9reedy path as PC2-Switch1-Switch2-PC2. If for example
multicast (right). It can be seen that in case of greedy wadti the link between Switch 1 and 2 goes down as indicated in
the packet is sent on common path to both destinations the f!gure, Switch 1 notices the fallure_and _for the pext packe
long as there is a common greedy routable link, hence savifgeived from PC1 the greedy calculation gives Switch 4 @s th
precious link capacity. To speed up multicast forwarding ip€xt hop, hereby avoiding the failed link without any global
a working DC environment, the solution can make use &tiluré propagation and route recomputation and requiing

the recent implementation of the greedy heuristic function Only for the detection of the failure.

NetFPGA architectures [24].

5 Failure handling

In current data center architecturesge multicast groups Pc1
are usually supported by introducing state to the switching T Soon2 4% (0:375,0607)
fabric. Note that the space-embedded structuréPaincae ool o)
permits the addressing of larger groups by definipgpimt and dhens % \
an offsetin the hyperbolic space. This type of addressing can i | swens,
designate servers whose distance from the point is less than */—A > = 0%y
the offset value, hereby succinctly addressing larger oew \ /
segments. We leave the implementation of such a multicast H 1/ switchral——¥ orgnar
solution for future work. cogms T MK ki
(-0.375, -0.607) ° Greedy path
"""""""""" i

Fig. 6: (8,4) tessellation with coordinates and our testbed
topology

In case of link failures it can occur that greedy routingdail
(stuck in a local minimum) however there would be available
Fti P non-greedy paths. We will show in Section V that the probabil
Flg 5: Multicast modes: Xcast and our greedy multicaﬁy of such events to happen irPmincae topo|ogy is very low
algorithm. compared to e.g. the disconnection probability of servensf
, . ) i the fat-tree topology in case of link failures. Moreover veas c
Multipath. For multipath purposeBoincar uses the fol- oy it the path diversity oPoinca to reduce the probability
lowing simple distributed algorithm: for a new incoming¢ greedy fails by considering the following algorithm. Whe

flow, choose the least-loaded outgoing link through whie th, 54, ,1ce node fails to find its destination with default gyeed
packets can reach the destination on a greedy path. Sucrbl?ting it can assign a random trajectory "biast) (to the

multipath algorithm relies strongly on the number of edge dinext packet and retry the transmission. Intermediate nodes
joint paths that can be used by greedy routing. To measure QW this pias to assigns weight§ to their neighbors based
many such paths exist between pairs of nodes Fo@ca® o, heir distanced; to the destination and pick a neighbor
topology G, we generate a directed subgra@h from G for it arger weight with greater probability. The effect diet
everyd destination. InGq a link pointing fromu to v eXists  iterent o parameter values on the greedy trajectories can
only if u and.z.; are connected iz and d(“_’d) > d(”’d,)' be seen in Figure 7. By setting alpha to a very low value the
All link capacities are set to 1 and the _maX|maI flow G is algorithm always favors the shortest greedy path, whiletite
calculated. By applying the Max-flow min-cut theorem [25] W&, higher positive value, the traversed routes will be disted

get the exact number of link-disjoint greedy routable npmm_ among the many greedy routable paths hereby avoiding the
paths between andd. Table Il shows the outcome of thisa| minimum. To completely eliminate this effect one can
process averaged for all source-destination pairs in 1@ | <o recent improvements of greedy routing [27] [28], howeve

Poincar topologies. After only moderate topology upgrades ., techniques notably increase routing complexity.
up to 4 greedy routable link disjoint paths are present in our

simulated topologies. For easier positioning the resuétsiate IV. STRUCTURAL GROWTH AND PERFORMANCE

that the corresponding values for fat-tree, dual-homedrést UPGRADES

(DHFT) [26], and Bcube are 1, 2 aridt 1 respectively, where  This section discusses hdwoinca© manages to satisfy the
k stands for the number of Bcube levels. incremental upgradability requirements and describe®war




Fig. 7: Path istribution for a source—&estlnatlon pair ase
of single patha = -100 (left) anda = 1 (right).

methods for capacity provisioning in a cost optimized manne.. @ ®)
The upgrade process ensures thay upgrade is a feasible Fig. 8: Figure (a) shows the process of adding 1 server to the

upgrade while affecting only the immediate vicinity of thetopology. Server node 2 is shifted to an outer coordinate to

newly connected servers or switches, i.e., without impacti Make room for switch node 1, thus adding 2 new free ports
the data center core and main operation to the system. One port will be used by new server node 3,

The tessellation based structure can be started from %'ﬁd one port is left open for f”tF”e use. To preserve greedy
%} utability, we connect server 5 with server 2. Figure (ljvgé

arbitrary number of servers and switches, and can be gigdu P th hout " b h d by chanai 4
built out by adding more servers to the perimeter. The ne W throughput capactty can be enhnanced by changing a 4-

layer of the recursive tessellation should be computed Iwhigl?rt s_\zw;[]cg to a 8-port switch in the core by using a free port
determines thepossible places where new servers can p8' Switch .

added. We demonstrate the initial build out method in tr(?e switch 3) or new server ports in the topo'ogy (|e serv

following simple example. Figure 8(a) shows an initial 44). The 4-port switch can be reused at an outer layer of the

pentagon tessellation based structure. To start with, we 6a topology.

4-port switches, and 10 servers. All switch ports are cot@tec  gimilarly to [9], [15], Poincaié leverages diverse bandwidth

to either servers or otherswnches._When adding one additio capabilities of current router devices, namely by conmecti

server to the topology, we can shift a server node to an ouff§sts through 1 Gbps ports to ToR switches and using higher

coordinate, put a new switch in its place, and then connggipacity 10 Gbps links in the inner layers of the topology.

both servers to the new switch. Using such building blocks allows designers to easily adjus
The coordinates of the devices can be computed and stogg@rsubscription to the desired level.

in a directory service to be used by manual configuration atwe further elaborate on the simple performance enhancing
new server or switch installment. Also an automatic coatin algorithm shown in Section II-B by using different connediti
assignment protocol could be implemented, which would tetdiusr,,, = 4.3 andr,. = 3.3 in case of switches and servers
newly installed devices their new coordinates based on thgpectively, except if the density of the topology is irdéx.
coordinates of their neighboring nodes. Besides this énatél \\e can maximize server port counts to reduce costs depending
assignment no extra configuration is needed toR@hca® on the tessellation (i.e. in a 4-decagon tessellation atigw
up and running. server port count to be 4 or less). We note that various finer-
As demand is getting higher over time, the performanggained optimization methods (in terms of throughput, cost
of Poincae can be structurally upgraded by adding moregtc.) would further enhanc®oinca® overall performance,
switching equipment. Larger switches can replace smalleswever such techniques are not in the scope of this paper.
switches in a plug-and-play manner always resulting indpett
structural benchmarks. Naturally, adding links to the mne V. PERFORMANCEEVALUATION
part of the topology can have larger impact. During the After getting through the detailed description of the basic
upgrade proces®oincae’s multipath capabilities ensure themechanisms irPoincag, we now turn to analyze its perfor-
uninterrupted operation and evolution of the data centéyeNV mance according to diverse metrics via simulation. First, w
replacing switches it is also possible to redundantly cohnelescribe the simulation environment and our general traffic
the new device using the coordinates of the old one agdenario. Next, the results of multipath and multicast grerf
gradually disconnect the device being replaced, sincedgregnance simulations are provided and we analyze the inherent
routing is permissive of such addressing singularity. Thfault tolerance of the architecture.
process yields a "seamless” switch replacement which mesnai
unnoticed by the servers in the topology. A. Throughput
A simple example for performance upgrade is depicted in To evaluatePoinca®€’s throughput, we use a flow-level
Figure 8(b) where a 4-port switch at location 1 is changed traffic simulator implementing fat-tree arRbincat routing.
an 8-port switch. The new switch, in addition to maintainin§Ve compare the aggregate throughput of the two systems as
the tessellation links, can be connected to any free switetsp the total shuffled data divided by the completion time of flows



All topologies contain 4000 servers with varying number 0¥l shows the throughput simulation results of the multipath
switches and the results are averaged over 10 simulatian rumouting algorithm. We choose random pairs of servers in
We adapt a permutation traffic matrix from [26] where everg000-server topologies, and send 100 different flows of 1MB
host sends 10 MB data to another host, and no host receidasa from the same source to the same destination. Results
more than one flow. Table IV shows the results of the traffere averaged over 1000 different source-destination .plirs
simulation. It can be seen that there is a trade-off betwieen tontrast to fat-tree, where the bottleneck is the acces$s lin
number of switch ports and the incurred aggregate throughpspeed of the serveBoincat leverages the multiple disjoint
Furthermore the performance of the system can be enhanpaths between the source and destination servers. We rbte th
by high capacity links in the core. The table shows threeoincai routing could be also augmented with a multipath
cases folPoinca the first is a budget-friendly topology with congestion control algorithm for further improvement. $ma
few switch ports and few high capacity links. The seconitbw management issues constitute important future work for
row shows a configuration equivalent to a similarly sizeds.

fat-tree DC in terms of throughput p_erformgnce. Fln_ally, Weossiogy Avg Nl Thioughput | Var T Wi | Wiax.
show an enhanced configuration with a higher switch pQrtoincaréetat-ree equiv. 152741 406.43 | 1000 | 2898.55
count and slightly more high capacity links. We also indicat_fat-ree ¢ = 32)) 1000 0 [ 1000] 1000

the throughput results for different fat-tree configuratio TABLE VI: Comparison of multipath throughput capability of
Although the latter two configurations represent a notablpoo server fat-tree andoincae systems (Mbps).
different cost (see Sec. VII), they perform similarly to Bac puiticast performance. The efficiency of the greedy mul-
other. o . ... ticast algorithm is compared to Xcast in Figure 10a. The plot
Traffic distribution. In Figure 9 we show the distribution shows the ratio of overall link loads when routing flows to the
of traffic flowing through links. The figures show that if thesame set of destinations in case of Xcast and greedy multicas
topology is more dense,_ then traffic in the middle is distigou working modes. A factor ofl.1 means thatl0% less link
evenly across all core links. capacity is used by greedy multicast when sending to the same
destinations.
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Forwarding burden of servers. In Poincaré server nodes (a) Multicast algorithm efficiendp) Greedy search and fat-tree search
are also actively participating in routing to ensure greedympared to Xcast. success ratio versus random fink fai-
connectedness throughout the system. Table V demonstrates Fig. 10 '

how many external flows need to be routed through the end
hosts in a all-to-all communication pattern. Contrarilyth@ C. Effects of link failures on greedy search
server-based routing in BcubBgincaie imposes only a small  Hare we show howPoincae copes with random link

forwarding burden which can be easily managed by host§iyres. Figure 10b shows that the resilience of the archi-
without additional resources. tecture is remarkable in case of realistic link failure sate

fat-tree | Poincaré (4-decagon)| Bcube [15]. We simulate random link failure events in the topology
0 1386.42 13299 and measured the overall success ratio of greedy routing for

TABLE V: Average forwarding burden on servers for the a”aoozﬁ-SOL;:I’CE-deStIPatIOI’I dpalrs. Tr;]e plot ‘?‘ISO shf(_)vx(/js the far:ll;re
to-all communication pattern on a 4096 server topology. andliing eature o greedy search, retrying to ind a path for
a maximum of 10 times, which improves routing success.

To compare the results to fat-tree based topologies, we also
plot the probability of host pairs remaining connected iesth

Load-balancing. The simple greedy multipath extensionstryctures at the presence of link failures which is an upper
algorithm is not always able to generate edge disjoint paths pound on the success rate.

demand. This can be regarded as a trade-off for the minimal

overhead requirement of the routing algorithm (and budg&t!: PROTOTYPEIMPLEMENTATION AND MEASUREMENTS
friendliness). We demonstrate that the algorithm proves toln order to demonstrate and further evaluRt@ncaig, we

be a practical and efficient load balancing approach. Talilave implemented a prototype in OpenFlow and carried out

B. Load-balancing and multicast performance



Topology Switches | Server ports| Switch ports | High capacity links | Aggregate throughputl Avg. per server throughpu{ Runtime (ms)
Poincaréeconomic 640 13510 10448 1200 239913.37 143.78 1334.67
Poincaréfat-tree equiv. 640 13510 14598 2350 494473.45 280.56 649.33
Poincaréhigh throughput 640 13510 15878 3500 558779.28 364.32 573.17
fat-tree o = 28)) 980 4000 25952 0 471914.01 265.71 680.5
fat-tree o = 32)) 1280 4000 36768 0 473971.33 265.36 680.17

TABLE 1V: Throughput (Mbps) comparison of 4000-server fade andPoincate DCs with different topology parameters.
performance measurements. event causes the restoration of the entry.

The OpenFlow specification [29] aims at enabling network Our testbed environment consisted of the aforementioned
innovation by strictly separating forwarding and contagic. TP-Link switches with 4+1 ports, PCs (Intel Core i3-530
Forwarding mechanisms including vendor-specific, praarie  CPUs at 2.93GHz, 2GB of RAM, running Debian GNU/Linux
solutions are dedicated to network devices which can Bgueeze with kernel 2.6.32-5) and a NOX v0.9.0 OpenFlow
controlled through an open interface by separate contretle controller operating in out-of-band control mode on a safgar
tities. Network devices (OpenFlow switches) forward paskemanagement network.
based on matching certain fields of packet headers with flow
table entries while flow tables are maintained by contreller 70 —pT— P —

In this framework, we have implemented greedy routing as | = areedy (3 entries) = ancare”

. . [Igreedy with cache oo _
novel forwarding mechanism added to the OpenFlow referent I NOX OF switch - Poincare - lower bound
switch v1.0 [30] working as follows. The flow table of a switch ESO M
consists of one entry for all ports storing the coordinafab® 240

>
(=%

corresponding neighbor and an additional one describ&g i5 s,
own position. We use the destination MAC field in the packe g

. . . . F20
header for storing coordinates and the forwarding mechanis
takes this single field into account. As the OpenFlow ref 10
erence switch requires, we store greedy rules in the linei || e —————
flow table (wildcarded rules). Instead of standard matching vor Ter Number of servers
greedy forwarding calculates the distance between ddistina (a) Performance on a single swit¢h) Cost comparison of fat-tree and
node (coordinates from incoming packet) and all neighbors Poincaréwhile adding servers incre-
(coordinates from flow entries), and finally, the entry witie t Figmeftlally
minimum distance is chosen (match) and its action is exelpute Figure 11a shows the results of simple performance mea-
This means that the packet is forwarded to the closest nerghtgu

q dwh | d be found. W h rements between two hosts connected to a single TP-
or dropped when no closer node can be found. We emphasgigh jeyice running different versions of OpenFlow switch.

thE} tgis f%rvx(/ja[)din% mechanisnl; resmljlts infiae;d s(ijz; .ﬂOW Throughput has been measuredilper f for UDP and TCP
table bounded by the port number plus one. In addition, w ubic) traffic, as well. On the one hand, performance of

usle N(?X_VOHQ.Ob[Sl] as O%enFl.ow cont_rolller ngCh pla_\ys_ e enhanced version of greedy forwarding (with caching) is
role only In the bootstrap phase; a special greedy apmnat'very similar to the standard switch application implemente

has been |mplemen_ted in or.der to add flow entries to SW'tCnﬂSNOX. Only the first packet suffers from increased delay in
based on tppology mformaugn. ) both cases. For the standard OpenFlow switch, the controlle
The basic greedy forwarding mechanism can be enhanggd; icch communication (packet in, flow mod) causes the
by caching active flows in a hash table. This improvemegL,y while greedy forwarding induces additional operzi
yields faster forwarding (after the first packet, the stadda,, ihe first packet. On the other hand, the basic greedy
exact matching is applied) at the cost of in_creased flow Sab'&lgorithm, calculating distances for all packets, shoits
and memory usage. Both greedy forwarding methods, basig; nerformance degradation depending on the number of

and enhanced, have been ported into OpenWRT [32] firmwaj&,, entries. More specifically, the throughput of a switch
(trunk version, bleeding edge, r26§36) operating on TReLiRyit, 3 and 5 entries are plotted, respectively. It should be
TL-WR841ND commodity switches. In order to handle link g phasized that the switch is able to operate with fixed

failures, a lightweight greedy daemon has been implementgds fio\y tables at the cost of only a moderate performance
detecting link up/down events. In case of link failure, the degradation, even in case of our low-end COTS device with
corresponding greedy flow entry is deleted by thpet | tool very limited computational power
through the local control interface of the switch, whileklinp Furthermore, we have built (a relevant subset dPpincaie
opology. The testbed topology consisting of four switcae
. topol The testbed topol t f tcaed
This TP-Link model requires some modification in the firmwameore ; ; ; ;
exactly the MAC learning function has to be disabled in thenkkdriver of two hosts (a.”d a NOX cont-roller)- is shown in Figure 6. l.n this
the switch (ag71xxar7240.c), and an extension is also necessary for corrdd€twork environment, the link failure recovery mechanism o
port status detection. Poincareis demonstrated. PC2 generates UDP traffic to PC1 at
“Current version of OpenFlow uses LLDP for link state detectivhich is a constant bit rate and the incoming packets with timestamps
implemented in the controller. Therefore, this approaah lva used only for | d h . d ol di . 2
small networks, and according to our experiments, the minintimeframe are _Ogge at t. € receiver ar.] _p otted in Figure 1 7Atsec
is around4 — 5 sec even in very simple testbeds. the indicated link on the original greedy path is unplugged
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1‘2‘222 ‘ ‘ the DC requires a structural reconfiguration of changingyeve
I flow rerouted | switch in the system. This means that the next upgrade could
80000 / cost the same as the whole system did until this point. On the
] other hand, a larger initial fat-tree could pose prohikitntry
link failure ] costs for a small company, as high as double or triple of the

bl | d .
(coble unpligeed) smaller, but equal performance tree. Moreover, this |anger

0 5 10 15

Fig. 12:TE§tiaanFge?ecovery would also reach its ceiling (note the jump after 8000 sesver

The two lines corresponding t®oinca®é show a) the

(link failure), thus PC1 cannot receive packets. The greedyinimum amount of money needed to build a working system
daemons running on Switch 1 and 2 detect the link-down eveartd more importantly b) a system that is equivalent to a fat-
and Switch 1 updates its flow table to the alternative pattee system in terms of throughput. In the first case theainiti
via Switch 4. This strictly local failure recovery mechanis DC has a very low entry cost, and it can be smoothly upgraded
achieves on-demand flow rerouting within sec with zero in small increments. In the second case, the “iso-throutjhpu

communication overheadlow restoration only depends onPoincae DC can be built with lower entry cost and stays

N
1)
=3
S
S

Id of the packets

the speed of link event detection. cheaper than or at worst comparable to its fat-tree couaterp
VII. CosTCONSIDERATIONS CABLING, INITIAL VIIl. RELATED WORK
ROLLOUT AND EXPANSION Recently hyperbolic geometry is gaining more focus when
A. Cabling it comes to explaining the intricate structure of real world

A practical and economical requirement of data centéPmplex networks [19] [34] and designing networks with
designs is to exhibit reasonable cabling complexyincae extreme navigational properties [35] [36] [28]. Moreowre
achieves this by implementing the locality of the edgesesinc hyperbolic embedding of the AS-level Internet topology has
connects nodes that are close in the hyperbolic space. Isee f€€n computed to illustrate the effectiveness of the hygierb
an (n, k) tessellation as a minimum topology, the followingsPace in real routing situations [37]. However, current-pro
arrangement hints at low cabling complexity. Foknmows of Posals for generating networks embedded in the hyperbolic
racks each containing one top levelswitch and the servers space cannot be directly used in data centers since they
and switches to whom is the closest among thietop level cannot guarantee e.d0% greedy packet delivery, symmetric
switches. In this case most of the cables reside in one répology, plug& play configuration, incremental upgradability
since it can be shown that onl9(logn) edges are “cross- and constant upper bounded node degree with logarithmic
row” edges, and hence easier to implement [33]. Similar§iameter.
racking servers and switches based on space proximity ghoul Several data center architectures have been proposed re-

result in a moderate cabling burden. cently. Data centers based on fat-tree topologies [18]], [15
N . ) [14] are built using commaodity switches arranged in three
B. Initial rollout and incremental expansion layers, namely core, medium (aggregation), and serverfedg

As it was previously shown in Section II-Boinca® is layers. The structure is also known as Clos topology. Ruitla
well-suited for starting small and upgrading incrementalls [14] is a scalable, fault tolerant, but complex layer-2 dzga-
for an initial build-out, aPoincaie-based data center can beer fabric built on multi-rooted tree topologies which sopis
constructed of any reasonable number of servers and switchasy migration of virtual machines. VL2 [15] is an agile data
of arbitrary port count. This flexibility enables start-ugsd center fabric based on end-host routing with properties lik
other budget-conscious companies to restrict their Initia performance isolation between services, load balancind, a
vestment (low CAPEX). To puRoincat€in a cost perspective, flat addressing. The topology of BCube [7] is generated using
we performed a cost comparison with the dual homed fat-treecursive algorithm. BCube is intended to be used in coatain
design. Our cost model is based on [22] using regular ($10@gsed, modular data centers, with a few thousand servers.
and high capacity ($250) switch ports, and also server poNOCube proposes a method to interconnect these containers
($100) as our main cost elements. The cost of cabling is a&p create a mega-data center [8]. An initial design of an
taken into account, but we find that cabling costs are margirssymmetric, scale-free network inspired data center tsireic
in compliance with [22]. Suppose that a start-up wants tewas proposed in [38].
build a private DC based on a fat-tree structure, startinhp wi The above designs are not geared towards incremental
500 servers. We considered two scenarios: a) minimum entqygradability. The LEGUP proposal tackles the problem of
cost and b) easily upgradable system for the forseeablesfutexpanding some existing data centers, adding heterogeneit
with a larger initial CAPEX. We assume that upgrades ate Clos networks [9]; however, its performance for small
incremental and continuousver time. Figure 11b shows theupgrades is unknown, as is the impact of the added heterogene
total cost of the company’s DC while expanding from 500 tity on routing performance. Jellyfish suggests to use random
8200 servers. It is shown that by starting with a small sizetetworks as underlying topology. Due to the random struc-
fat-tree topology £ = 16) the incurred entry cost is low. ture, incremental expandability of a Jellyfish DC is adeguat
However, when reaching maximal tree size (1024 serverBwever, routing is identified as an open research challenge



[10]. A similar argument holds in the case of REWIRE [11]j14]
as well.

IX. CONCLUSION [15]

In this paper we introduceldoincaré, a data center architec-
ture embedded into the hyperbolic plafeinca’ uses greedy
routing to forward packets between any pair of servers aied da6]
to its topological properties always routes along optinahp. 17]
MoreoverPoincai€'s routing relies only on local decisions ano[
does not require complicated routing tables to be stored &né|
sweaty routing protocols to be run. We showed that in the
hyperbolic space greedy routing effectively exploit netwo (1)
redundancy which bard@oincai€ with excellent failure toler-
ance and recovery. Our extensions of greedy routing previqgo]
multipath and multicast possibilities hereby boosting-tme [37)
one and one-to-many communication performance. Satigfyin
our basic requiremerRoincag€’s structure and performance isf22]
easy to upgrade and can be done with arbitrary granularity,
servers can be added one-by-one and every single link if#g]
proves performance without additional configuration. Gaa-f [24]
sibility analysis indicates tha®oincat€ provides comparable
throughput in comparison with with fat-tree topologies ésd
flexibility enables to start from a very cheap but working D&>!
and incrementally upgrade to any desired performance,level
hereby significantly lowering entering costs. [26]
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