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Abstract—Current trends in cloud computing suggest that both
large, public clouds and small, private clouds will proliferate
in the near future. Operational requirements, such as high
bandwidth, dependability and smooth manageability, are similar
for both types of clouds and their underlying data center
architecture. Such requirements can be satisfied with utilizing
fully distributed, low-overhead mechanisms at the algorithm
level, and an efficient layer 2 implementation at the practical
level. On the other hand, owners of evolving private data centers
are in dire need of an incrementally upgradeable architecture
which supports a small roll-out and continuous expansion in
small quanta. In order to satisfy both requirements, we propose
Poincaré, a data center architecture inspired by hyperbolic
tessellations, which utilizes low-overhead, greedy routing. On
one hand, Poincaré scales to support large data centers with
low diameter, high bisection bandwidth, inherent multipath and
multicast capabilities, and efficient error recovery. On the other
hand, Poincaré supports incremental plug & play upgradability
with regard to both servers and switches. We evaluatePoincaré
using analysis, extensive simulations and a prototype implemen-
tation.

Index Terms—data center, incremental upgrade, hyperbolic
tessellation, greedy routing, distributed operation, scalability

I. I NTRODUCTION

Cloud computing has been emerging to be the dominant
operation model of present and future networked services. In
order to provide the underlying pervasive networking func-
tions, data centers have to scale up to previously unseen
proportions. Tens of thousands of servers is already the norm
for large providers, and this number is predicted to grow
significantly over the next few years, as services, storage,as
well as enterprises and users are increasingly relying on the
cloud. Factor in virtualization and we are easily in the range
of a million virtual end points. In parallel to migrating to
huge, public clouds, another trend is gaining momentum: more
and more organizations decide to consolidate their computing
resources into small- or medium-scale private clouds [1].
There are multiple reasons behind the surge of private clouds.
First, security and privacy issues using a public infrastructure
can be prohibitive for certain organizations, such as gov-
ernments [2]. Second, private cloud operation policies and
management procedures can be tailor-made to the owner’s
liking [1]. Finally, of course, cost is always a deciding factor;
surprisingly, operating a private cloud could be advantageous
in the long(er) run [3]. As a consequence, the increasing
proliferation of both small and large data centers are highly
likely.

There are two orthogonal requirements for a data center
design to suit both the needs of small-and-starting and large-
and-evolving data centers. First, such a design should be
structurally upgradable: a small company should be able to
start a private data center quickly and with a limited budget,
and build it out incrementally in small quanta [4]. Note that
even if servers are co-located at a data center provider, SMEs
still have to face increasing costs as the number of servers
increases. On the other hand, upgrades are also frequently
needed in large data centers, triggered by a growing user
base (private, e.g., Facebook) or deployment of more demand-
ing cloud applications and getting more corporate customers
(public, e.g., Amazon). As a well-known real-world example,
Facebook has upgraded its data center facilities frequently and
step-by-step [5], resulting in a doubling of servers over the
course of 7 months in 2010 [6]. With most designs providing
mechanisms only for large-scale expansion [7] [8], little work
has been already done regarding incremental upgradabilityin
data centers. LEGUP [9] leverages hardware heterogeneity to
reduce the cost of upgrades in fat-tree based data centers.
Jellyfish [10] and REWIRE [11] propose a non-symmetric
topology to facilitate upgradability of data centers; however,
they sacrifice structure creating a significant challenge for their
future routing mechanism and performance upgrades.

Second, the respective data center design should beoper-
ationally scalableproviding performance, dependability and
manageability for tens or hundreds of thousands of network
nodes. On the network algorithm level, this implies distributed,
low-overhead mechanisms both for routing and failure han-
dling. On the implementation level, due to both virtualization
and network management reasons, data centers are often
managed as a single logical layer 2 fabric. On the other hand,
traditional LAN technologies do not scale well to the size of
large data centers. Network layer techniques, such as large
forwarding tables, loop-free routing, quick failure detection
and propagation, etc. are needed to be realized utilizing only
switch hardware. Recently proposed solutions, such as TRILL
[12], SEATTLE [13] and Portland [14], address these issues
to a certain extent, but they come with a cost of significant
complexity at the switch/fabric control plane. Other architec-
tures, like BCube [7] and VL2 [15], rely on servers routing
to overcome this limitation. While certainly a worthwhile
approach, with the advent of computation-intensive cloud
services and the migration of vast online storages into the
cloud, coupled with the cloud providers’ economic incentives



to run their servers close to their full capacity [16], we argue
that servers may face resource constraints if being the main
responsible also for routing.

In this paper we proposePoincaŕe, a data center architecture
which is by design structurally upgradeable and operationally
scalable. The topology ofPoincaŕe is inspired by hyper-
bolic tessellations, providing incremental expandability and
favorable performance characteristics.Poincaŕe uses a fully
distributed, low-overhead, greedy routing algorithm efficiently
utilizing the features of the topology. Such a lightweight
routing mechanism can be fully implemented in layer 2, while
keeping both the control and the forwarding plane simple at the
same time, enabling a data center built out of cheap network
equipment. The main benefits ofPoincaŕe are threefold. First,
Poincaŕe’s hyperbolic structure provides analytically provable
low network diameter and high performance greedy routing,
multiple short paths between arbitrary nodes and high bi-
section bandwidth. Second,Poincaŕe’s greedy routing mech-
anism harness the aforementioned structural characteristics
while allowing for natural local failure handling within fail-
ure detection time and low-overhead multipath and multicast
routing. Finally, Poincaŕe supports incremental plug & play
upgradability with regard to both servers and switches, while
enabling a small initial rollout and a flexible, budget-conscious
way of data center expansion. We justify our design with
analytical proofs and extensive simulations augmented by a
prototype implementation and testbed experiments.

The rest of this paper is structured as follows. Section II in-
troduces thePoincaŕedata center structure based on hyperbolic
tessellations. In Section III we present our greedy geographic
routing algorithm is along with its multipath, multicast and
error recovery extensions. The incremental structural and
performance upgrade process is carefully described in Section
IV. In Section V we thoroughly evaluate the performance of
Poincaŕe via simulation. Section VI introduces thePoincaŕe
prototype implementation and provides testbed experimentre-
sults. Section VII presents practical considerations on cabling,
initial rollout and expansion costs. Finally, related workis
described briefly in Section VIII and the paper is concluded
in Section IX.

II. STRUCTURE: A TRIP TO THEHYPERBOLIC SPACE

A tree is a very cost effective interconnection structure when
routing has to be solved on a population of network nodes. A
k-ary tree can provide low diameter (low delay), low average
degree (low cost), easy loop-detection and simple routing
decision in the nodes [17]. Such compelling properties qualify
trees to be utilized in an array of routing protocols (STP, OSPF,
ISIS) and, more recently, in data centers. On the negative
side, trees cannot ensure path diversity and high throughput:
two key requirements for data centers architectures. Recently,
several augmentations of trees have been proposed to over-
come these limitations by densification (e.g., Clos networks)
providing multiple paths, large bisection bandwidth and no
single point of failure [18] [15]. A common drawback of such
approaches is that when expanding the DC these “embedded”

interconnection structures has to be carefully maintainedand
sometimes completely replaced and rewired1 to keep up with
the number of servers. Such complete rewiring in fact mean
the building of a new DC from scratch. LEGUP [9] addresses
this issue by allowing for heterogeneous switches; yet, it is
only suited for large upgrades and relies on higher layer
mechanisms for performance.

Since we requirePoincaŕe to be incrementally upgradeable
total rewiring is unacceptable. Thus we must need an archi-
tecture which canpreserve its inherent structureregardless of
the number of servers and still provide path diversity and high
throughput. In the following we design a topology inspired
by tessellations embedded in the hyperbolic plane exhibiting
structural similarity with trees [19]. A tessellation can be
interpreted as an augmentation of the tree structure in which
the branches are connected and can exchange traffic without
affecting the core.

A. The basic topology ofPoincaré: hyperbolic tessellations

As a minimum underlying topologyPoincaŕe contains a
regular tessellation of the hyperbolic plane in the Poincaré disk
model [20]. In this model the points of the hyperbolic plane
are mapped to the unit disk. The(n, k) regular tessellation2

uses regularn-gons from whichk meet in a given vertex to
fill the hyperbolic plane with no overlaps and no gaps. If
we consider the vertices of the polygons as nodes, and the
sides as links, we have a regular topology embedded into
the hyperbolic plane. Figure 1 shows a fat-tree topology and
a (5, 4) tessellation with similar topological parameters. As
it will be shown Poincaŕe’s routing can effectively utilize
the ”side” links to exchange traffic between “regions“ of a
tessellation without affecting the core. This property enables us
to use a fixed size core (as opposed to fat-tree’s variable sized
core when upgrading to larger core switches) and implement
incremental server and performance upgrades. In the figure we
plotted a traffic heat map of an all-to-all traffic scenario for a
15 node fat-tree topology and a basicPoincaŕe topology with
similar topological parameters (average degree, average path
length).

The coordinates of the nodes for a given(n, k) tessellation
can be easily computed by implementing simple geometric
mappings in the hyperbolic plane (see for example [21] for
Java code) for arbitrary network size. The derived coordinates
will point to the logical places of servers and switches, and
also the link positions. Using the tessellation as a map we
can grow Poincaŕe by placing servers and switches to the
unoccupied node positions starting from the inner part of the
tessellation. The detailed growth algorithm is introducedin
Section IV.

Such a tessellation topology immediately possesses com-
pelling properties. In the sequel we prove that the diameterof

1When the arity of the tree has to be increased.
2As opposed to Euclidean tiling there exist a(n, k) tiling on the hyperbolic

plane if 1

n
+ 1

k
< 1

2
because on the hyperbolic plane the angles of a regular

n-gon could be arbitrary small



Fig. 1: Link traffic distribution in case of all-to-
all traffic in (left) fat-tree and (right) tessellation
structures.

Fig. 2: The layers of the recursion
is shown with different colors.

Fig. 3: The next-hop on the short-
est path is also a greedy next-hop.

such a network grows logarithmically with the network size
while the degree of the nodes is bounded byk.

Theorem 1:The diameter of the(n, k) tessellation grows
logarithmically with the number of nodes.

Proof: Denote the number of polygons and vertices on
the ”perimeter” of them-th level withpm andvm respectively
(see Fig. 2). For anyn > 3, pm+1 andvm+1 can be calculated
from pm andvm according to the following recursion.

vm+1 = (n− 3)vm + (k − 3)(n− 2)vm − (n− 2)pm

pm+1 = vm + (k − 3)vm − pm

Solving the recursion we get:
(

vm
pm

)

=

(

(k − 2)(n− 2)− 1 −(n− 2)
k − 2 −1

)m(

v0
p0

)

Let M be the matrix of the recursion, thenMm can be
written asMm = QΛmQ−1, whereQ is the matrix of the
eigenvectors ofM andΛ is a diagonal matrix whose nonzero
elements are the corresponding eigenvalues. In our case

Q =

(

−
√

(Z−2)2−4−Z

2(k−2) −−Z−

√
(Z−2)2−4

2(k−2)

1 1

)

Λ =





Z−2−
√

(Z−2)2−4

2 0

0
Z−2+

√
(Z−2)2−4

2





whereZ = (n−2)(k−2). Hence by usingv0 = n andp0 = 0
we get

vm = n
(Z − 2− Y )m(Y − Z)− (Z − 2 + Y )m(Y + Z)

21+mY

≈ n(Z − 1)m = n ((n− 2)(k − 2)− 1)
m

whereY =
√

(Z − 2)2 − 4 and the last step is due toZ ≈ Y .

For the special casen = 3

vm+1 = (k − 4)vm − vm−1.

Let λ1,2 be the solutions of equationr2− (k− 4)r+1 = 0,
thenvm can be written in the following form:

vm = aλm
1 + bλm

2 ,

where a and b can be calculated fromv1 = 3 and v2 =
3(k − 3).

Since the number of vertices grows exponentially with the
number of levels, the diameter is at most(2m + 1)n2 which
completes the proof.

B. Performance topologies

To boost the performance of a givenPoincaŕe topology we
can add more links between our nodes without any restraints,
hereby improving topological (diameter, average hop distance)
and operational properties (error tolerance, multipath, mul-
ticast, throughput). For evaluation purposes we define the
following simple algorithm to produce a family of graphs
by adding more links: take a tessellation and a radiusr, and
connect the nodes whose distance in the hyperbolic space is
less thanr. This way link locality is preserved hereby mod-
erating cabling costs. Table I presents how the characteristics
of the topology is enhanced by adding more and more links
for three types of 1000-node tessellations. We note that our
simple algorithm increases the average degree by large quanta,
but we emphasize that link additions can be done with arbitrary
granularity and using diverse algorithms to make the best out
of a fixed budget.

r Avg. deg. Max. deg.Avg. dist. Diameter

16-triangle
sparse 3.5 4.09 16 5.20 7

medium 4.8 6.27 32 4.29 6
dense 5.5 9.26 64 3.70 5

6-pentagon
sparse 3.3 5.96 20 5.14 7

medium 4.2 8.15 34 4.26 6
dense 4.4 10.9 51 3.79 5

4-decagon
sparse 3.2 6.5 20 4.97 8

medium 3.3 7.59 24 4.52 6
dense 3.7 9.86 36 4.22 5

TABLE I: Tessellations with different (n, k) parameters.

C. Comparison of DC topologies

Table II presents the properties of 4000 serverPoincaŕe
topologies with corresponding fat-tree and BCube structures.
One can see thatPoincaŕe is comparable with the widely used
fat-tree and BCube topologies in terms of diameter, average
path length and bisection bandwidth, while using less switches.
Current technological trends allow us to depend on larger
switches (in the range of 100-150 ports3) as the price of such
switches grows only linearly with the number of their ports
[22]. Also note that due to its heavy-tailed degree distribution
Poincaŕe uses only a small number (10) of large switches as
it can be seen on Fig. 4.

3VL2 for example uses at least 40-port switches for a 4000-server DC
topology.
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Fig. 4: Cumulative degree distribution of the different density
4-decagon topologies.

DC Type SwitchesDiam. Avg. dist. Max. deg. Bis. bw.
Fat-Tree(n = 28) 980 6 5.23 28 7471.9
BCube(n=16,k=2) 762 8 5.36 16 6002.7
Poincaré(4-decagon) 640 9 4.85 76 7334.7

TABLE II: Topological comparison of different DC topologies.
III. ROUTING: GREEDY GEOGRAPHICROUTING

Poincaŕe routes greedily on the geographic coordinates of
nodes in the tessellation. In this section we present the basic
routing mechanism and prove its performance onPoincaŕe’s
structure in an analytical manner. Simple yet efficient multi-
path and multicast algorithms are also proposed, which both
leverage and enhance the greedy routing paradigm, and sustain
the low overhead operation manner.

A. Basic mechanism

In greedy geographic routing, by default, the routing mech-
anism doesn’t require routing states to be kept in the switching
fabric. The routing decision is solely based on the metric
distances between the link neighbor nodesv(v1, v2) of u and
the destination nodet(t1, t2). An intermediate node on the
forwarding path always forwards a packet to its neighbor
closest to the destination. InPoincaŕe we use the distances
between the nodes on the hyperbolicPoincaŕe disk as the
metric for greedy routing:

d(v, t) = arccosh

(

1 + 2
(v1 − t1)

2 + (v2 − t2)
2

(1− v21 − v22)(1 − t21 − t22)

)

If u does not have any neighborv for which d(v, t) ≤ d(u, t)
then greedy routing is in a local minimum and fails. Note that
for example Bcube’s single path routing algorithm4 also suffers
from such phenomena. To overcome this, Bcube’s routing falls
back to BSF search to be able to route when network failures
are present. We will see thatPoincaŕe’s structure ensures such
events to happen only in case of massive network failures and
with extremely small probability.

Theorem 2:Assuming no network failures greedy routing
always finds optimal paths between arbitrary node pairs in an
(n, k) tessellation.

Proof: We prove this statement in an indirect manner.
Assume that there exist node pairs between which the length
of the shortest path is smaller than the greedy path. Among
these pick the pair (u, v) for which h(u, v) is minimal, where
h(u, v) refers to the minimal hopcount betweenu and v in
the tessellation. Figure 2 shows the tessellation from the point
of u. Sinceh(u, v) is minimal the greedy path must deviate
from the shortest path atu. The red and the blue lines show

4A special kind of greedy routing in high dimensional space.

the shortest and the greedy paths on which the first node iss

andg respectively.
Due to the reflection symmetry of the tessellation there is

an axis of symmetryS which mapss to g and also separates5

s and v. Hence there exists at least one intersectioni of the
shortest path andS. By symmetryi can coincide with a node
or can be a midpoint of an edge. Let’s reflect the shortest path
betweenu and i with respect to axisS. The mirror image
and the part fromi to v of the original shortest path is also a
shortest path betweenu and v. Sinceg resides in the mirror
image it is also a part of a shortest path. This is in contradiction
with our assumption thath(u, v) is minimal.
Although the proof above holds for an infinite hyperbolic
tessellation only, our simulations readily showed that greedy
routing can effectively find the optimal paths on finite and
upgradedPoincaŕe topologies, thus eventuating quasi the same
values for average distance and average greedy distance forthe
topologies shown in Table I.

Since arccosh() is monotone this operation can be left
out of the calculation for boosting forwarding performance.
Hence the required computation at each forwarding decision
is reduced to about a dozen of simple arithmetic operations
which consumes reasonably few CPU cycles. By default,
nodes are required to calculate the next-hop distances for each
packet to be forwarded by the intermediate nodes. As it is
shown in Section VI in a working greedy routing environment,
routes can be cached by intermediate switches, and flow labels
can be used for per-flow forwarding decisions. We emphasize
that Poincaŕe retains all advantages of greedy routing thus
there is no link state propagation protocol prevalently used
in DC architectures. This routing mechanism doesn’t require
carefully adjusted routing tables and implements routing with
in essence zero messaging overhead.

B. Low overhead greedy routing extensions

DC specific routing requires many features such as multicast
(to support MapReduce induced traffic load and distributed
storage systems) and multipath routing (for multipath TCP,
error tolerance, VM migration). We extendPoincaŕe’s default
greedy routing to support the above mentioned features in a
way that maintains the low overhead and distributed routing
operation.

Multicast. Forsmall multicast groups, Poincaŕe implements
an Xcast-like [23] mechanism where all destination addresses
are stored in the header, and a packet is sent only once through
a link for a given set of destinations. When common path
towards all destinations cannot be maintained, the multicast
group is split, the headers are rewritten and the packets are
forwarded through different links accordingly. To reduce the
volume of traffic, the routing mechanism in the nodes can be
traced to the well known set cover problem, i.e., there is a
multicast group (set), and we want to cover these destinations
by as few outgoing links as possible. As opposed to Xcast

5This is simply becauseg is closer tov thans also in Euclidean distance,
while u is in the center.



which can rely only on poor diversity of shortest paths,
Poincaŕe leverages the abundance of greedy routes for a given
multicast group. It means that there are numerous greedy
routable next hop neighbors towards a given destination, and
an intermediate node can chose a lower number of links to
send a multicast packet out on. Our implementation employs a
greedy heuristic to solve the set cover problem. Figure 5 shows
the different path selection results for a source and a two-
member destination group in case of Xcast (left) and greedy
multicast (right). It can be seen that in case of greedy multicast
the packet is sent on common path to both destinations as
long as there is a common greedy routable link, hence saving
precious link capacity. To speed up multicast forwarding in
a working DC environment, the solution can make use of
the recent implementation of the greedy heuristic functionin
NetFPGA architectures [24].

In current data center architectureslarge multicast groups
are usually supported by introducing state to the switching
fabric. Note that the space-embedded structure ofPoincaŕe
permits the addressing of larger groups by defining apoint and
an offset in the hyperbolic space. This type of addressing can
designate servers whose distance from the point is less than
the offset value, hereby succinctly addressing larger network
segments. We leave the implementation of such a multicast
solution for future work.

Fig. 5: Multicast modes: Xcast and our greedy multicast
algorithm.

Multipath. For multipath purposesPoincaŕe uses the fol-
lowing simple distributed algorithm: for a new incoming
flow, choose the least-loaded outgoing link through which the
packets can reach the destination on a greedy path. Such a
multipath algorithm relies strongly on the number of edge dis-
joint paths that can be used by greedy routing. To measure how
many such paths exist between pairs of nodes in aPoincaŕe
topologyG, we generate a directed subgraphGd from G for
everyd destination. InGd a link pointing fromu to v exists
only if u and v are connected inG and d(u, d) > d(v, d).
All link capacities are set to 1 and the maximal flow onGd is
calculated. By applying the Max-flow min-cut theorem [25] we
get the exact number of link-disjoint greedy routable multiple
paths betweens and d. Table III shows the outcome of this
process averaged for all source-destination pairs in 1000-node
Poincaŕe topologies. After only moderate topology upgrades
up to 4 greedy routable link disjoint paths are present in our
simulated topologies. For easier positioning the results we note
that the corresponding values for fat-tree, dual-homed fat-tree
(DHFT) [26], and Bcube are 1, 2 andk+1 respectively, where
k stands for the number of Bcube levels.

Topology Avg. server ports (Max) Avg. greedy disjoint paths (Max)
4-decagon sparse 3.371 (4) 2.138 (4)
4-decagon dense 3.663 (4) 2.569 (4)

TABLE III: Number of greedy routable link disjoint paths.

C. Failure handling

Greedy routing provides a fairly natural way of recovering
from failures. Consider the scenario in Fig. 6 where PC1
sends traffic to PC2. From the coordinates we can compute
the greedy path as PC2-Switch1-Switch2-PC2. If for example
the link between Switch 1 and 2 goes down as indicated in
the figure, Switch 1 notices the failure and for the next packet
received from PC1 the greedy calculation gives Switch 4 as the
next hop, hereby avoiding the failed link without any global
failure propagation and route recomputation and requiringtime
only for the detection of the failure.

Fig. 6: (8,4) tessellation with coordinates and our testbed
topology

In case of link failures it can occur that greedy routing fails
(stuck in a local minimum) however there would be available
non-greedy paths. We will show in Section V that the probabil-
ity of such events to happen in aPoincaŕe topology is very low
compared to e.g. the disconnection probability of servers from
the fat-tree topology in case of link failures. Moreover we can
exploit the path diversity ofPoincaŕe to reduce the probability
of greedy fails by considering the following algorithm. When
a source node fails to find its destination with default greedy
routing it can assign a random trajectory ”bias” (α) to the
next packet and retry the transmission. Intermediate nodes
use this bias to assigns weightsdαi to their neighbors based
on their distancedi to the destination and pick a neighbor
with larger weight with greater probability. The effect of the
different α parameter values on the greedy trajectories can
be seen in Figure 7. By setting alpha to a very low value the
algorithm always favors the shortest greedy path, while if set to
a higher positive value, the traversed routes will be distributed
among the many greedy routable paths hereby avoiding the
local minimum. To completely eliminate this effect one can
use recent improvements of greedy routing [27] [28], however
such techniques notably increase routing complexity.

IV. STRUCTURAL GROWTH AND PERFORMANCE

UPGRADES

This section discusses howPoincaŕe manages to satisfy the
incremental upgradability requirements and describes various



Fig. 7: Path distribution for a source-destination pair in case
of single pathα = -100 (left) andα = 1 (right).

methods for capacity provisioning in a cost optimized manner.
The upgrade process ensures thatany upgrade is a feasible
upgrade, while affecting only the immediate vicinity of the
newly connected servers or switches, i.e., without impacting
the data center core and main operation.

The tessellation based structure can be started from an
arbitrary number of servers and switches, and can be gradually
built out by adding more servers to the perimeter. The next
layer of the recursive tessellation should be computed which
determines thepossible places where new servers can be
added. We demonstrate the initial build out method in the
following simple example. Figure 8(a) shows an initial 4-
pentagon tessellation based structure. To start with, we have 5
4-port switches, and 10 servers. All switch ports are connected
to either servers or other switches. When adding one additional
server to the topology, we can shift a server node to an outer
coordinate, put a new switch in its place, and then connect
both servers to the new switch.

The coordinates of the devices can be computed and stored
in a directory service to be used by manual configuration at
new server or switch installment. Also an automatic coordinate
assignment protocol could be implemented, which would tell
newly installed devices their new coordinates based on the
coordinates of their neighboring nodes. Besides this coordinate
assignment no extra configuration is needed to getPoincaŕe
up and running.

As demand is getting higher over time, the performance
of Poincaŕe can be structurally upgraded by adding more
switching equipment. Larger switches can replace smaller
switches in a plug-and-play manner always resulting in better
structural benchmarks. Naturally, adding links to the inner
part of the topology can have larger impact. During the
upgrade process,Poincaŕe’s multipath capabilities ensure the
uninterrupted operation and evolution of the data center. When
replacing switches it is also possible to redundantly connect
the new device using the coordinates of the old one and
gradually disconnect the device being replaced, since greedy
routing is permissive of such addressing singularity. This
process yields a ”seamless” switch replacement which remains
unnoticed by the servers in the topology.

A simple example for performance upgrade is depicted in
Figure 8(b) where a 4-port switch at location 1 is changed to
an 8-port switch. The new switch, in addition to maintaining
the tessellation links, can be connected to any free switch ports

Fig. 8: Figure (a) shows the process of adding 1 server to the
topology. Server node 2 is shifted to an outer coordinate to
make room for switch node 1, thus adding 2 new free ports
to the system. One port will be used by new server node 3,
and one port is left open for future use. To preserve greedy
routability, we connect server 5 with server 2. Figure (b) shows
how throughput capacity can be enhanced by changing a 4-
port switch to a 8-port switch in the core by using a free port
of switch 3.

(i.e. switch 3) or new server ports in the topology (i.e. server
4). The 4-port switch can be reused at an outer layer of the
topology.

Similarly to [9], [15], Poincaŕe leverages diverse bandwidth
capabilities of current router devices, namely by connecting
hosts through 1 Gbps ports to ToR switches and using higher
capacity 10 Gbps links in the inner layers of the topology.
Using such building blocks allows designers to easily adjust
oversubscription to the desired level.

We further elaborate on the simple performance enhancing
algorithm shown in Section II-B by using different connection
radiusrsw = 4.3 andrse = 3.3 in case of switches and servers
respectively, except if the density of the topology is indicated.
We can maximize server port counts to reduce costs depending
on the tessellation (i.e. in a 4-decagon tessellation allowing
server port count to be 4 or less). We note that various finer-
grained optimization methods (in terms of throughput, cost,
etc.) would further enhancePoincaŕe overall performance,
however such techniques are not in the scope of this paper.

V. PERFORMANCEEVALUATION

After getting through the detailed description of the basic
mechanisms inPoincaŕe, we now turn to analyze its perfor-
mance according to diverse metrics via simulation. First, we
describe the simulation environment and our general traffic
scenario. Next, the results of multipath and multicast perfor-
mance simulations are provided and we analyze the inherent
fault tolerance of the architecture.

A. Throughput

To evaluatePoincaŕe’s throughput, we use a flow-level
traffic simulator implementing fat-tree andPoincaŕe routing.
We compare the aggregate throughput of the two systems as
the total shuffled data divided by the completion time of flows.



All topologies contain 4000 servers with varying number of
switches and the results are averaged over 10 simulation runs.
We adapt a permutation traffic matrix from [26] where every
host sends 10 MB data to another host, and no host receives
more than one flow. Table IV shows the results of the traffic
simulation. It can be seen that there is a trade-off between the
number of switch ports and the incurred aggregate throughput.
Furthermore the performance of the system can be enhanced
by high capacity links in the core. The table shows three
cases forPoincaŕe; the first is a budget-friendly topology with
few switch ports and few high capacity links. The second
row shows a configuration equivalent to a similarly sized
fat-tree DC in terms of throughput performance. Finally, we
show an enhanced configuration with a higher switch port
count and slightly more high capacity links. We also indicate
the throughput results for different fat-tree configurations.
Although the latter two configurations represent a notably
different cost (see Sec. VII), they perform similarly to each
other.

Traffic distribution. In Figure 9 we show the distribution
of traffic flowing through links. The figures show that if the
topology is more dense, then traffic in the middle is distributed
evenly across all core links.

Fig. 9: Link traffic distribution in sparse and medium 4-
decagon topologies.

Forwarding burden of servers. In Poincaŕe server nodes
are also actively participating in routing to ensure greedy
connectedness throughout the system. Table V demonstrates
how many external flows need to be routed through the end
hosts in a all-to-all communication pattern. Contrarily tothe
server-based routing in Bcube,Poincaŕe imposes only a small
forwarding burden which can be easily managed by hosts
without additional resources.

fat-tree Poincaré(4-decagon) Bcube
0 1386.42 13299

TABLE V: Average forwarding burden on servers for the all-
to-all communication pattern on a 4096 server topology.

B. Load-balancing and multicast performance

Load-balancing. The simple greedy multipath extension
algorithm is not always able to generate edge disjoint pathson-
demand. This can be regarded as a trade-off for the minimal
overhead requirement of the routing algorithm (and budget
friendliness). We demonstrate that the algorithm proves to
be a practical and efficient load balancing approach. Table

VI shows the throughput simulation results of the multipath
routing algorithm. We choose random pairs of servers in
4000-server topologies, and send 100 different flows of 1MB
data from the same source to the same destination. Results
are averaged over 1000 different source-destination pairs. In
contrast to fat-tree, where the bottleneck is the access link
speed of the server,Poincaŕe leverages the multiple disjoint
paths between the source and destination servers. We note that
Poincaŕe routing could be also augmented with a multipath
congestion control algorithm for further improvement. Smart
flow management issues constitute important future work for
us.

Topology Avg. Multi. Throughput Var Min. Max.
Poincaréfat-tree equiv. 1527.41 406.43 1000 2898.55
fat-tree (n = 32)) 1000 0 1000 1000

TABLE VI: Comparison of multipath throughput capability of
4000 server fat-tree andPoincaŕe systems (Mbps).

Multicast performance. The efficiency of the greedy mul-
ticast algorithm is compared to Xcast in Figure 10a. The plot
shows the ratio of overall link loads when routing flows to the
same set of destinations in case of Xcast and greedy multicast
working modes. A factor of1.1 means that10% less link
capacity is used by greedy multicast when sending to the same
destinations.
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C. Effects of link failures on greedy search

Here we show howPoincaŕe copes with random link
failures. Figure 10b shows that the resilience of the archi-
tecture is remarkable in case of realistic link failure rates
[15]. We simulate random link failure events in the topology
and measured the overall success ratio of greedy routing for
50000 source-destination pairs. The plot also shows the failure
handling feature of greedy search, retrying to find a path for
a maximum of 10 times, which improves routing success.
To compare the results to fat-tree based topologies, we also
plot the probability of host pairs remaining connected in these
structures at the presence of link failures which is an upper
bound on the success rate.

VI. PROTOTYPE IMPLEMENTATION AND MEASUREMENTS

In order to demonstrate and further evaluatePoincaŕe, we
have implemented a prototype in OpenFlow and carried out



Topology Switches Server ports Switch ports High capacity links Aggregate throughput Avg. per server throughput Runtime (ms)
Poincaréeconomic 640 13510 10448 1200 239913.37 143.78 1334.67
Poincaréfat-tree equiv. 640 13510 14598 2350 494473.45 280.56 649.33
Poincaréhigh throughput 640 13510 15878 3500 558779.28 364.32 573.17
fat-tree (n = 28)) 980 4000 25952 0 471914.01 265.71 680.5
fat-tree (n = 32)) 1280 4000 36768 0 473971.33 265.36 680.17

TABLE IV: Throughput (Mbps) comparison of 4000-server fat-tree andPoincaŕe DCs with different topology parameters.
performance measurements.

The OpenFlow specification [29] aims at enabling network
innovation by strictly separating forwarding and control logic.
Forwarding mechanisms including vendor-specific, proprietary
solutions are dedicated to network devices which can be
controlled through an open interface by separate controller en-
tities. Network devices (OpenFlow switches) forward packets
based on matching certain fields of packet headers with flow
table entries while flow tables are maintained by controllers.
In this framework, we have implemented greedy routing as a
novel forwarding mechanism added to the OpenFlow reference
switch v1.0 [30] working as follows. The flow table of a switch
consists of one entry for all ports storing the coordinates of the
corresponding neighbor and an additional one describing its
own position. We use the destination MAC field in the packet
header for storing coordinates and the forwarding mechanism
takes this single field into account. As the OpenFlow ref-
erence switch requires, we store greedy rules in the linear
flow table (wildcarded rules). Instead of standard matching,
greedy forwarding calculates the distance between destination
node (coordinates from incoming packet) and all neighbors
(coordinates from flow entries), and finally, the entry with the
minimum distance is chosen (match) and its action is executed.
This means that the packet is forwarded to the closest neighbor
or dropped when no closer node can be found. We emphasize
that this forwarding mechanism results in afixed size flow
table bounded by the port number plus one. In addition, we
use NOX v0.9.0 [31] as OpenFlow controller which plays a
role only in the bootstrap phase; a special greedy application
has been implemented in order to add flow entries to switches
based on topology information.

The basic greedy forwarding mechanism can be enhanced
by caching active flows in a hash table. This improvement
yields faster forwarding (after the first packet, the standard
exact matching is applied) at the cost of increased flow tables
and memory usage. Both greedy forwarding methods, basic
and enhanced, have been ported into OpenWRT [32] firmware
(trunk version, bleeding edge, r26936) operating on TP-Link
TL-WR841ND commodity switches.6 In order to handle link
failures, a lightweight greedy daemon has been implemented
detecting link up/down events.7 In case of link failure, the
corresponding greedy flow entry is deleted by thedpctl tool
through the local control interface of the switch, while link up

6This TP-Link model requires some modification in the firmware, more
exactly the MAC learning function has to be disabled in the kernel driver of
the switch (ag71xxar7240.c), and an extension is also necessary for correct
port status detection.

7Current version of OpenFlow uses LLDP for link state detection which is
implemented in the controller. Therefore, this approach can be used only for
small networks, and according to our experiments, the minimum timeframe
is around4− 5 sec even in very simple testbeds.

event causes the restoration of the entry.
Our testbed environment consisted of the aforementioned

TP-Link switches with 4+1 ports, PCs (Intel Core i3-530
CPUs at 2.93GHz, 2GB of RAM, running Debian GNU/Linux
Squeeze with kernel 2.6.32-5) and a NOX v0.9.0 OpenFlow
controller operating in out-of-band control mode on a separate
management network.
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Fig. 11
Figure 11a shows the results of simple performance mea-

surements between two hosts connected to a single TP-
Link device running different versions of OpenFlow switch.
Throughput has been measured byiperf for UDP and TCP
(Cubic) traffic, as well. On the one hand, performance of
the enhanced version of greedy forwarding (with caching) is
very similar to the standard switch application implemented
in NOX. Only the first packet suffers from increased delay in
both cases. For the standard OpenFlow switch, the controller-
to-switch communication (packet in, flow mod) causes the
delay, while greedy forwarding induces additional operations
for the first packet. On the other hand, the basic greedy
algorithm, calculating distances for all packets, shows10-
20% performance degradation depending on the number of
flow entries. More specifically, the throughput of a switch
with 3 and 5 entries are plotted, respectively. It should be
emphasized that the switch is able to operate with fixed
size flow tables at the cost of only a moderate performance
degradation, even in case of our low-end COTS device with
very limited computational power.

Furthermore, we have built (a relevant subset of) aPoincaŕe
topology. The testbed topology consisting of four switchesand
two hosts (and a NOX controller) is shown in Figure 6. In this
network environment, the link failure recovery mechanism of
Poincaŕe is demonstrated. PC2 generates UDP traffic to PC1 at
a constant bit rate and the incoming packets with timestamps
are logged at the receiver and plotted in Figure 12. At7.1 sec
the indicated link on the original greedy path is unplugged
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(link failure), thus PC1 cannot receive packets. The greedy
daemons running on Switch 1 and 2 detect the link-down event
and Switch 1 updates its flow table to the alternative path
via Switch 4. This strictly local failure recovery mechanism
achieves on-demand flow rerouting within1 sec with zero
communication overhead: flow restoration only depends on
the speed of link event detection.

VII. C OST CONSIDERATIONS: CABLING , INITIAL

ROLLOUT AND EXPANSION

A. Cabling

A practical and economical requirement of data center
designs is to exhibit reasonable cabling complexity.Poincaŕe
achieves this by implementing the locality of the edges since it
connects nodes that are close in the hyperbolic space. If we use
an (n, k) tessellation as a minimum topology, the following
arrangement hints at low cabling complexity. Formk rows of
racks each containing one top levelti switch and the servers
and switches to whomti is the closest among thek top level
switches. In this case most of the cables reside in one row
since it can be shown that onlyO(log n) edges are “cross-
row” edges, and hence easier to implement [33]. Similarly
racking servers and switches based on space proximity should
result in a moderate cabling burden.

B. Initial rollout and incremental expansion

As it was previously shown in Section II-BPoincaŕe is
well-suited for starting small and upgrading incrementally. As
for an initial build-out, aPoincaŕe-based data center can be
constructed of any reasonable number of servers and switches
of arbitrary port count. This flexibility enables start-upsand
other budget-conscious companies to restrict their initial in-
vestment (low CAPEX). To putPoincaŕe in a cost perspective,
we performed a cost comparison with the dual homed fat-tree
design. Our cost model is based on [22] using regular ($100)
and high capacity ($250) switch ports, and also server ports
($100) as our main cost elements. The cost of cabling is also
taken into account, but we find that cabling costs are marginal
in compliance with [22]. Suppose that a start-up wants to
build a private DC based on a fat-tree structure, starting with
500 servers. We considered two scenarios: a) minimum entry
cost and b) easily upgradable system for the forseeable future
with a larger initial CAPEX. We assume that upgrades are
incremental and continuousover time. Figure 11b shows the
total cost of the company’s DC while expanding from 500 to
8200 servers. It is shown that by starting with a small sized
fat-tree topology (n = 16) the incurred entry cost is low.
However, when reaching maximal tree size (1024 servers),

the DC requires a structural reconfiguration of changing every
switch in the system. This means that the next upgrade could
cost the same as the whole system did until this point. On the
other hand, a larger initial fat-tree could pose prohibitive entry
costs for a small company, as high as double or triple of the
smaller, but equal performance tree. Moreover, this largertree
would also reach its ceiling (note the jump after 8000 servers).

The two lines corresponding toPoincaŕe show a) the
minimum amount of money needed to build a working system
and more importantly b) a system that is equivalent to a fat-
tree system in terms of throughput. In the first case the initial
DC has a very low entry cost, and it can be smoothly upgraded
in small increments. In the second case, the “iso-throughput”
Poincaŕe DC can be built with lower entry cost and stays
cheaper than or at worst comparable to its fat-tree counterpart.

VIII. R ELATED WORK

Recently hyperbolic geometry is gaining more focus when
it comes to explaining the intricate structure of real world
complex networks [19] [34] and designing networks with
extreme navigational properties [35] [36] [28]. Moreover,the
hyperbolic embedding of the AS-level Internet topology has
been computed to illustrate the effectiveness of the hyperbolic
space in real routing situations [37]. However, current pro-
posals for generating networks embedded in the hyperbolic
space cannot be directly used in data centers since they
cannot guarantee e.g.,100% greedy packet delivery, symmetric
topology, plug& play configuration, incremental upgradability
and constant upper bounded node degree with logarithmic
diameter.

Several data center architectures have been proposed re-
cently. Data centers based on fat-tree topologies [18], [15],
[14] are built using commodity switches arranged in three
layers, namely core, medium (aggregation), and server (edge)
layers. The structure is also known as Clos topology. Portland
[14] is a scalable, fault tolerant, but complex layer-2 datacen-
ter fabric built on multi-rooted tree topologies which supports
easy migration of virtual machines. VL2 [15] is an agile data
center fabric based on end-host routing with properties like
performance isolation between services, load balancing, and
flat addressing. The topology of BCube [7] is generated usinga
recursive algorithm. BCube is intended to be used in container
based, modular data centers, with a few thousand servers.
MDCube proposes a method to interconnect these containers
to create a mega-data center [8]. An initial design of an
asymmetric, scale-free network inspired data center structure
was proposed in [38].

The above designs are not geared towards incremental
upgradability. The LEGUP proposal tackles the problem of
expanding some existing data centers, adding heterogeneity
to Clos networks [9]; however, its performance for small
upgrades is unknown, as is the impact of the added heterogene-
ity on routing performance. Jellyfish suggests to use random
networks as underlying topology. Due to the random struc-
ture, incremental expandability of a Jellyfish DC is adequate;
however, routing is identified as an open research challenge



[10]. A similar argument holds in the case of REWIRE [11]
as well.

IX. CONCLUSION

In this paper we introducedPoincaŕe, a data center architec-
ture embedded into the hyperbolic plane.Poincaŕeuses greedy
routing to forward packets between any pair of servers and due
to its topological properties always routes along optimal paths.
MoreoverPoincaŕe’s routing relies only on local decisions and
does not require complicated routing tables to be stored and
sweaty routing protocols to be run. We showed that in the
hyperbolic space greedy routing effectively exploit network
redundancy which bardsPoincaŕe with excellent failure toler-
ance and recovery. Our extensions of greedy routing provides
multipath and multicast possibilities hereby boosting one-to-
one and one-to-many communication performance. Satisfying
our basic requirementPoincaŕe’s structure and performance is
easy to upgrade and can be done with arbitrary granularity,
servers can be added one-by-one and every single link im-
proves performance without additional configuration. Our fea-
sibility analysis indicates thatPoincaŕe provides comparable
throughput in comparison with with fat-tree topologies andits
flexibility enables to start from a very cheap but working DC
and incrementally upgrade to any desired performance level,
hereby significantly lowering entering costs.
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