
A Framework for Formal Verification of
Real-Time Systems

Tamás Tóth
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Abstract. Formal methods have an important role in ensuring the cor-
rectness of safety critical systems. However, their application in industry
is always cumbersome: the lack of experts and the complexity of specifi-
cation languages prevent the utilization of formal verification techniques.
In this work we take a step in the direction of making formal methods
applicable by introducing a framework that enables efficient modeling
and analysis of real-time systems.

1 Introduction

Nowadays, an ever increasing number of information systems are embedded sys-
tems that have a dedicated function in a specific, often safety critical application
environment (e.g., components of a railway control system). In case of safety
critical systems, failures may endanger human life, or result in serious environ-
mental or material damage, thus ensuring conformance to a correct specification
is crucial for their development.

To guarantee that a system operates according to its specification, formal
verification techniques can be used. These techniques are based on formal rep-
resentation of both systems and their properties (requirements), which makes
it possible to apply mathematical reasoning to investigate their relationship.
Moreover, these methods allow verification of systems in an early phase of the
development life cycle.

Since behavior of safety critical systems is often time dependent, the notion
of time has to be represented in their models. The most prevalent way to model
timed systems is the formalism of timed automata. However, this formalism is
only suitable to describe timed behavior with respect to constant values, thus
its expressive power is not sufficient to model systems with parametric behavior.
Parametric timed automata, an extension of the original formalism, addresses
this problem.

In this work we introduce a formal modeling framework for supporting
the efficient development of parametric timed automaton based formal mod-
els. The modeling language is essentially based on the language of the well-know



Symbolic Analysis Laboratory (SAL) framework1 with extensions to simplify the
work of the modelers. These extensions enable the modeling of time dependent
behavior on language level.

2 Related Work

Our work is inspired by the SAL model checker [5] and its language (our ex-
tensions are introduced in Section 3). The SAL language enables compact mod-
eling of systems in terms of (unlabeled) symbolic transition systems, however
it doesn’t support explicit modeling of time related behavior. The aim was to
preserve compatibility so that the timed models of our extended language can
still be transformed to the input of SAL. As another related tool, UPPAAL [1] is
a model checker widely used for the verification of timed systems. It has a graph-
ical interface and it provides efficient model checking algorithms to verify timed
automata. UPPAAL models can also be transformed to our language with some
restrictions: our formalism does not handle complex function declarations. Our
approach has different strengths as the underlying Satisfiability Modulo Theories
(SMT) technologies are efficient for even complex data structures of the modeled
systems. In addition, complex synchronization constraints can be compactly ex-
pressed in our approach. The industrial case study we use was first introduced
in [6], where the SAL model checker was used for the verification. Our work now
is based on the lessons learnt from that work.

3 The Specification Language

The core of the specification language is a constraint language that enables decla-
ration of uninterpreted constant symbols of complex data types and constraints
over them. Supported data types include boolean, integer, real, enumeration,
function, array, tuple and record types, and subtypes that are constrained by
some formula. Constraints are sorted first order logic formulae in the combined
theory of integer and real arithmetic with uninterpreted constant and function
symbols.

The specification language enables the modeling of real time systems by
means of symbolic transition systems with clock variables and parameters. The
definition of a system consists of variable declarations, invariant and urgency
constraints that constraint the traces of the system, and the description of the
initialization and transition relations of the system with guarded commands.
Systems can be composed synchronously or asynchronously to define more com-
plex behavior. Properties are CTL∗ formulae over system variables.

For a more detailed description we refer the reader to [7].

1 http://sal.csl.sri.com/
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4 The Verification Workflow

The semantics of the language is provided by a series of simplifying model trans-
formations, and a mapping to an SMT problem. The starting point of the work-
flow is a model in the above language given either directly, or as a result of a
transformation from other timed formalisms, e.g. UPPAAL [1].

As a first step, the system is automatically flattened, that is, the result of a
synchronous, respectively asynchronous composition is established. This is per-
formed by merging the variables, invariant and urgency constraints, and initial-
ization and transition definitions of the components. During this step, many of
the constructed transitions can be eliminated by simply checking the satisfiabil-
ity of their guards with a call to the underlying SMT solver [4].

In the next step, the model is automatically ”untimed” by expressing the
semantics of delay transitions explicitly. Here, a combined transition semantics
[3] [5] is considered, where a transition merges the effects of a delay transition,
followed by a discrete transition. For that purpose, a new input variable d is
introduced to represent time delay. Such an untimed system model can easily be
mapped to SAL or other intermediate formalisms. At the same time, transition
(and initialization) definitions are completed, that is, assignments for unmodified
variables (e.g., variables of asynchronous components) are made explicit. As a
result, each variable (even those of some complex data type) is assigned a value
in at most one assignment of a behavior definition.

The symbolic transition system represented by the model can then be easily
expressed in SMT by transforming initialization and transition definitions of the
system to predicates I(x̄), respectively T (x̄, x̄′) as usual [2].

The tooling is implemented in Eclipse2 using Eclipse Modeling Framework3

and relating technologies.

– Abstract syntax. The abstract syntax of the language is implemented as a
metamodel in EMF. It is defined as an extension of the core language suitable
for defining complex data types and expressions.

– Concrete syntax. The textual concrete syntax is defined by an LL∗-parsable
grammar. The textual editor is then generated using the Xtext4 tooling.

– Semantics. Model transformations that define the semantics of the language
are implemented in Xtend5.

– Well-formedness rules. Together with other validation constraints, algo-
rithms for type checking and type inference are implemented for the type
system of the language.

2 http://eclipse.org/
3 http://eclipse.org/modeling/emf/
4 http://eclipse.org/Xtext/
5 http://eclipse.org/xtend/
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5 Evaluation and Conclusion

This work is one step towards scalable formal modeling. We proposed a modeling
language to provide better support for the designers of formal models by focusing
on the aspects of data semantics, time dependent behavior, parametrization, and
synchronous and asynchronous composition of components. Instead of manually
coding flat transition systems, we provided automated model transformations
from our extended language to more simple transition systems that can be di-
rectly mapped to the input of existing SMT solvers. This way and automated
verification workflow is offered.

To evaluate the effectiveness of our language, the formal model of the intro-
duced case study was developed in both our and the SAL languages. Comparing
the results, the complexity of the developed models are the following.

The SAL model contains:

– 5 components for modeling the basic behavior consisting of 410 lines of code,
– 2 components for supporting the proper analysis of the temporal logic spec-

ification consisting of 105 lines of code,
– 3 components for recognizing the loops in the state space (required for the

verification) consisting of 145 lines of code.

The formal model in our extended language contains 4 components and 235 lines
of code, which demonstrates that the new language has its advantage. Moreover,
it does not require additional components for the analysis.

Compared to UPPAAL timed automata, the main advantage of our language
is the greater flexibility in the handling of clock variables and clock constraints.
However, as UPPAAL provides a graphical modeling interface, in case of small
models it makes the development of formal models more simple. Regarding the
efficiency of verification, both approaches have their strengths.

In the future we plan to further improve our language with higher level
modeling constructs. We also plan to develop new model checking algorithms
based on induction techniques.
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