
 1

Runtime Verification of Critical Systems

Based on Temporal Patterns

Research Report

István Majzik

Budapest University of Technology and Economics

2018.

 2

Contents

1 Introduction ... 3

2 The General Context ... 3

2.1 On-line Verification ... 3

2.2 Monitor Synthesis ... 4

2.3 A Temporal Logic Variant for Capturing Requirements ... 5

2.3.1 The Operators of the Logic ... 5

2.3.2 The Semantics of the Logic .. 8

3 Describing Event Patterns ... 9

3.1 Previous Work .. 9

3.2 The Pattern Library ..10

3.3 Abstract Syntax for a Graphical Pattern Language ..15

3.4 Tool Support to Combine Patterns ...17

4 Conclusions ...19

5 References ..20

 3

1 Introduction

This research report describes a technology for supporting the runtime verification of the be-
haviour of critical embedded and cyber-physical systems. Here a pattern-based approach is
described for capturing the requirements that form the basis of runtime monitoring. On the
basis of the captured requirements, the source code of monitor components can be generat-
ed automatically. The pattern based approach captures safety and liveness properties (for
monitoring safe and correct behaviour during execution).

In Section 2, the general context of the work is presented, including the temporal logic variant
that is supported. Section 3 describes the event patterns and the specification of a graphical
tool to support the composition of patterns.

2 The General Context

This section describes the general concept of runtime verification in order to put into context
the definition of the pattern based requirements capturing approach presented in the subse-
quent sections of the document.

2.1 On-line Verification

On-line verification by runtime monitoring addresses the detection of errors and malfunctions
that manifest themselves in runtime (e.g., due to random hardware faults, configuration
faults, operator faults, faults in adaptation etc.). Such kind of error detection is especially im-
portant in safety-critical systems, where one of the basic principles for assuring safe behav-
iour is reactive fail-safety: proper detection and handling of hazardous errors that occur in
system components implementing a safety-related function. This principle appears, among
others, in IEC 61508, the generic standard for safety-related electronic systems.

Accordingly, on-line verification uses runtime monitor components that observe the behav-
iour of the components (the trace of states, events, actions, and the perceived context), de-
tect the hazardous situations, and trigger a reaction to maintain safety (e.g., to stop the sys-
tem). In the typical case, these monitor components are implemented as additional software
components.

Automated construction of monitors (by the synthesis of their source code) is possible on the
basis of a proper language that captures the requirements (rules for safe and correct behav-
iour). For this purpose, high-level languages like sequence diagrams, reference automata,
temporal logics can be used. On the basis of this specification, the synthesis tool automati-
cally generates the source code of the monitor components that detect the critical situations.

Note that monitors are useful not only in runtime (to detect operational faults), but also during
testing: The monitors form part of the test oracle that decides whether the behaviour is ac-
ceptable considering the execution of a given test suite (i.e., a set of test traces is evaluated).

The following use cases of monitoring and runtime verification are supported:

 Behaviour monitoring of software components: In this use case the goal is to check
the internal behaviour of the component, detecting in this way all errors that influence
the states (state variables) and the control flow of the component. The monitored
component is instrumented in order to send to the monitor information (signatures)
that allow the identification of the internal states. The monitor receives this run-time
information and compares it with the reference behaviour that defines the states and
state transitions that are allowed (i.e., accepted by the monitor without detecting an
error).

 Trace-based monitoring of single components: In this use case the goal is to check
the externally observable behaviour of a component (when the instrumentation nec-

 4

essary for checking its internal behaviour is not possible). The monitor observes the
timed sequence of inputs and outputs on the interface of the component (together
with context and configuration related information) and decides whether the run-time
sequence of these events is conformant with the reference information that is given
as a set of allowed traces. Basically, reference traces capture the externally observa-
ble operation of a single component.

 Trace-based monitoring of interacting components: In this use case the goal is to
check the interactions between components. The monitor observes the sequences of
inputs and outputs on the interfaces of multiple interacting components (together with
context related information) and decides whether the run-time sequence of these
events is conformant with the reference information that is given as a set of allowed
traces. Basically, traces represent here the correct execution of interactions (proto-
cols) among multiple components.

A typical application of these monitoring approaches is the checking of safety properties
(“something bad never happens”) and liveness properties (“something good will eventually
happen”). In this case the monitors observe the execution and evaluate the reachability of
specified situations. Reachability is described using operators like “eventually”, “always”,
“until”, “potentially always”, and “leads to”, potentially with time information. An example
reachability property that can be checked by a monitor is the following: “Whenever a state
Stop is reached, it implies that no Speedup actions are executed until the event Restart is
received”. The source code of the monitors is generated in such a way that they observe and
evaluate the execution trace on the basis of these expressions.

2.2 Monitor Synthesis

As mentioned above, on-line monitoring and verification is supported by the automated gen-
eration of the source code of the monitor components on the basis of the properties to be
monitored. To do this, it is necessary to define the language that is used to describe the
properties relevant for on-line verification. Moreover, it is necessary to develop the algorithms
to be used by the monitors to evaluate the properties. These algorithms will be realized by
the monitor source code generator tool (Figure 1) that (together with the component instru-
mentation technologies) is made available to the developers.

Monitor code

generator

Source code

for run-time

monitors

Algorithms to

evaluate

requirements

Algorithms to

synthesize

monitors

Techniques and

interfaces for

instrumentation

Reference

behaviour

Reference

traces

Function

contracts

Figure 1. Supporting on-line verification by monitor code generation

In order to apply this kind of on-line verification, the following inputs are needed:

 5

 Description of properties (hazardous situations) to be monitored. These will be formal-
ized and form the basis of monitor code generation.

 Interfaces to observe the trace of states/events/actions to be monitored, or source
code of the components for instrumentation.

In the following we focus on the description of properties based on the states/events/actions
that are defined as atomic propositions.

2.3 A Temporal Logic Variant for Capturing Requirements

We use a temporal logic language to represent requirements for runtime monitoring. A new
variant of linear temporal logics called Context-aware Timed Propositional Linear Temporal
Logic (CaTL) is used that (besides having the usual temporal operators as “next”, “until”,
“eventually” and “globally”) may include observable events, actions, perceived context, con-
figuration, and also time. This way the context-aware real-time behaviour of systems can be
monitored.

Propositional Linear Temporal Logic (PLTL) [1] is extensively used for defining requirements,
and particularly popular in runtime verification frameworks. PLTL expressions can be intro-
duced as logic expressions that can be evaluated on a trace of steps, in which each step can
be characterized by atomic propositions. Here atomic propositions are local characteristics of
the step that may include all elements of a monitored execution trace that are relevant from
the point of view of property monitoring: function call, function return, input or output signal,
message received or sent, timer started or expired, state entered or left, context change,
configuration change, predicate on the value of a variable etc. Later, we will call these atomic
propositions in general as “events”, and the trace of steps is the “trace of events”.

Besides the usual Boolean language operators, PLTL has the following temporal operators:

 X: “Next” operator (X P means that the next step in the trace shall be characterized by
the atomic proposition P).

 U: “Until” operator (P U Q means that a step characterized by the atomic proposition
Q shall eventually occur, and until that occurrence all steps of the trace shall be char-
acterized by P).

 G: “Globally” operator (G P means that each step in the trace shall be characterized
by P).

 F: “Future” or “Eventually” operator (F P means that eventually a step shall occur in
the trace that is characterized by P).

 W: “Weak until” operator (P W Q means that either there is no step in the trace char-
acterized by Q, or a step characterized by the atomic proposition Q shall eventually
occur and until that occurrence all steps of the trace shall be characterized by P).

In spite of there are several extensions of PLTL, for various purposes, there is no context-
aware temporal logic that can be found in the literature. For this reason previously we de-
fined a new extension of PLTL, the Context-aware Timed Propositional Linear Temporal Log-
ic (CaTL).

2.3.1 The Operators of the Logic

Context is referenced in the CaTL formulas using context fragments. A context fragment is
an instance model of the context metamodel. It can be represented as a UML package with
the name of the context fragment. As the context view consists of instances from the context
metamodel, the creation of the context metamodel becomes a significant part of creating
requirements. At first the context metamodel contains the classes, its properties and the links
between them. Moreover the context metamodel shall define the well-formedness and se-

 6

mantic constraints. Well-formedness constraints define constraints that must be satisfied by
any context model, otherwise conceptual rules or the laws of physics are violated. Semantic
constraints are derived from the requirements of an application, this way these are only pre-
conditions or expectations about the context that can be violated in particular cases (e.g.,
when the robustness of an autonomous system is exercised).

The basic vocabulary of CaTL consist of a finite set P of propositions, a finite set T of static
timing variables and a finite set CM of static context variables.

Each ci CM is an instance of M context metamodel (ci M). A context metamodel is de-
fined as a 2-tuple M = (N,R), where N represents the set of classes in the metamodel and R

represents the relations (i.e., association or generalization) in the model. An ni N is a class,
which has a set of properties. Each property has a name and a type (e.g., Boolean or string).

One can create an EM set of predefined contexts, where ei M for all ei EM. The context
variables and the predefined contexts contain instances of the classes (objects) from M.

Each object has a unique identifier and an ni N class. The values of the properties can be
defined by property constraints (defined later), which refer to the objects by the unique identi-
fiers given in the variables. It is important, that if two context variables contain two objects
with the same identifier, then that two objects must be equivalent.

In addition, one can use two dynamic variables: t, which represents a clock and e, which rep-
resents the context of the system. M must be defined in such a way, which ensures that e is

always a valid instance of M (e M).

Af is the set of atomic formulas, which consists of propositions from P, atomic timing con-
straints, context constraints and property constraints.

 Propositions are labels, referring to properties of a system. Each proposition can be
evaluated to true or false in each state of the system.

Examples: initialized, connected

 The timing constraints are defined in the following form: t u, where t is the dynamic

clock variable, {<, >, =}, u {ti + c, c}, ti T and c N.

Examples: t = t0, t < t0 + 5

 The context constraints are defined in the following form: xy, where x EM VM and

y CM {e}. In this notation is a compatibility relation (meaning x is compatible
with y) and VM is a set of context definitions. Context definitions are instances of the
M metamodel. A context definition can be one of the followings:

o a static context variable (ci CM), or

o a new context, created from a static context variable, with one of the following
operators:

 Node exclusion: z - v, where z is a context definition and v is a present
class instance of z,

 Node addition: z + w, where z is a context definition and w is an in-
stance of the classes of M,

 Connection exclusion: z - - a, where z is a context definition and a is a
present connection in z,

 Connection addition: z + + b(c, d), where z is a context definition and b
is connection between c and d, compatible with M.

Examples: e0 e, e0 - x e

 The property constraints are expressions over properties of an object. The following
syntax is defined to unambiguously select a p property: context.object.p. The syntax

 7

of the property constraints is: p v, where p is a property, v is a value, which has to

be from the same type as the property, and is a comparison operator, which can be
evaluated to a Boolean value.

Examples: e0.a.connected = true, e1.b.speed < 10

For each atomic formula, assigns the modality of that atomic formula (a so-called “tem-

perature”): : Af {hot, cold}. An atomic formula with hot temperature is a mandatory, while
cold formulas are optional. The notation of the modality is the following. If no additional nota-
tion is given, then the modality of the atomic formula is hot (mandatory). The cold (optional)
modality of the af atomic formula is written like < af >.

A CaTL formula can be one of the followings:

 Atomic formula: af Af

 Disjunction:

 Negation:

 “Next” operator: X

 “Until” operator: 1 U 2

All static variables used in a formula are implicitly quantified with a universal quantifier. Addi-
tional operators can be defined with the previously defined ones as syntactical abbreviations.
The most commonly used abbreviations are defined as follows:

 Conjunction: a b = (a b)

 Implication: a b = a b

 “Eventually” operator: F = true U , where “true” denotes the Boolean true value

 “Globally” operator: G = (F)

 “Weak until” operator: 1 W 2 = (G 1) (1 U 2)

To be able to represent CaTL formula in machine-readable textual format, we use the follow-
ing concrete syntax of the operators (Table 1).

Operator Concrete textual syntax

 not

 and

 or

 implies

X Next

U Until

G Globally

F Eventually

W Until*

 Compatible

 Table 1: Concrete textual syntax for PLTL operators

The other operators (=, <, >, +, ++, -, --) are used in their usual mathematical form.

 8

2.3.2 The Semantics of the Logic

Formally, the CaTL formulas are interpreted over finite traces of Context-aware Kripke-
structures (CaKS). A CaKS is the extended version of the classical Kripke-structure, which is
the mathematical abstraction of finite state-transition systems with labelled states. A CaKS
for a P set of labels and an M context metamodel is defined as a 6-tuple: CaKS = (S, T, I, L,
C, E), where

 S is a finite set of states.

 T SS is the state transition relation.

 I S is the initial state of the system.

 L is a labelling function, which assigns labels to states L: S 2P.

 C function assigns clock value to each state: C: S N, and the clock value assigned

to the initial state is 0 (C(I) = 0) and if (a, b) T, then C(b) >= C(a), so the time is not
decreasing.

 E function assigns a context to each state: E: S C, where C is the set of context in-

stances (c C: c M).

Thus a CaKS model is a finite state-transition system, where a context and a clock value are
assigned to each state of the system.

A finite trace of a CaKS is sequence of states connected by the transition relation: = (s0, s1,

s2, … sn-1), where si S (i [0, n- 1]), n > 0, s0 = I and 0<i<n : (si-1, si) T. A j trace suffix is

defined by removing the first j steps (j < n) from the trace. By definition 0=.

The inductive definition of the semantics of a CaTL formula is given below. The notation

i |= means, that the formula is true on i trace suffix. The x|a=b notation is used for sub-

stituting the a variable in x with the b value.

 |= p if and only if p L(s0), where p P is an atomic proposition.

 |= c if and only if c|t=C(s0) is true, where c is a timing constraint.

 |= d if and only if d|e=E(s0) is true, where d is a context constraint.

 |= f if and only if f|e=E(s0) can be evaluated, and evaluated to true, where f is a prop-
erty constraint. If f contains a property, which does not exist, then the constraint will
be evaluated to false.

 |= if and only if |= is not true

 |= 1 2 if and only if |= 1 or |= 2

 |= X if and only if length of is at least 2 (n>1) and 1 |=

 |= 1 U 2 if and only if 0 <= i < n: i |= 2 and 0 <= j < i: j |= 1

Lastly, a few terms concerning the contexts must be defined. An e1 context is compatible with

e2 (denoted as e1 e2) if, and only if, exists a bijective function between the two object sets
e1 and e2, which assigns a compatible object to each object. Two objects are compatible, if
and only if both have the same type and have the same relations to other objects. Therefore

if the compatibility function assigns o2 e2 to o1 e1 and o4 e2 to o3 e1 and there is an
edge between o1 and o3, then an edge must be present in e2 between o2 and o4, with the
same label as in e1. Note that the context compatibility relation does not require the equality

or compatibility of the properties of the objects, only the object types and relations are con-
cerned.

 9

The compatibility relation defines a bijective function, thus in e1 e2 for all objects in e1 (the
Oe1 notation will be used in the future), there must be an object from Oe2 assigned, and if o’,

o’’ Oe1 are two different objects then the assigned objects from Oe2 must be different. It is
also required to assign an object to all objects in Oe1, but objects in Oe2 can remain without an

assigned counterpart.

The objects in the context variables have unique identifiers, meaning that if two objects with
the same identifier appear in two contexts then these two objects are identical. This con-
straint results that the assignments between the objects are immutable. Each object has only
one identifier, thus two different identifiers always mean two different objects.

After getting through syntax and semantics of CaTL, let us consider some easy to under-
stand examples. First of all, by the definitions CaTL is an extension of PLTL, thus any valid
PLTL formula is a valid CaTL formula. The following formulas are all valid CaTL formulas.
The meaning for each formula is also given.

 (())G connected F disconnected

It is always true, that if the system is in the connected state, then it will eventually be-
come disconnected.

 0 0((5))G connected t t F disconnected t t

It is always true, that if the system is connected, then it will be disconnected in 5 se-
conds (it is assumed that the time unit is a second).

 1 2(() ())G connected e e X disconnected F e e

It is always true, that if the system is connected and in the e1 context and will be dis-
connected in the next state, then eventually it will be in the e2 context. It can be also

phrased as follows: If the system is connected to an object and disconnects from it,
then it will eventually be connected to another object.

3 Describing Event Patterns

As formal specification languages like temporal logics or formal automata are often consid-
ered too low-level for the developers, a possible approach is the definition of easy-to-use
requirement patterns. They combine the precise textual description with a graphical and/or
formal representation (in a similar way like design patterns in OO architecture design).

In the following we

 identify the main patterns that are supported by our approach (as reported in [4], over
90% of the practical properties that were investigated could be expressed using these
simple patterns),

 give the CaTL temporal logic based representation of these patterns (this is used to
construct the complete CaTL based representation of the properties for monitor
source code generation),

 propose an abstract syntax for a graphical pattern language (the concrete syntax can
be elaborated in agreement with the domain specific tools).

3.1 Previous Work

The idea of property specification patterns was first suggested by Dwyer et al [3]. The moti-
vation was to free the user from building complex temporal logic expressions that needs
deep knowledge and expertise. They proposed a specification pattern system which is a hi-
erarchical system of simple patterns. These patterns generalize commonly occurring re-
quirements without being too abstract. The paper [4] extends this work by assessing the

 10

method based on more than 500 real requirements, collected from literature, researchers,
mailing lists and student projects. They found that 92% of these requirements were instances
of their patterns. Their updated pattern collection is available online [5].

A similar work restricted to safety patterns can be read in [6]. It contains a hierarchical classi-
fication that can help the user to find the appropriate pattern. An example pattern definition
(excerpt) can be seen in Figure 2.

Figure 2. An example property pattern (Precedence) [6]

The work [7] applies the pattern-based requirement description to the domain of programma-
ble logic controllers. Their main contributions are two new pattern groups (possibility and
fairness), and a tool helping the users to produce the temporal logic expressions based on
the patterns. Later a new pattern (liveness, that is the generalization of the possibility pattern)
was proposed and applied in a real case study [8].

The work of Preusse et al. [9] follows a slightly different approach. The defined small “pat-
terns” based on the Computational Tree Logic (CTL) that can be combined together freely.
The result is a highly restricted English called Safety-Oriented Technical Language (SOTL).
Although it is considered as a specification method, even they admit that it is not suitable for
a complete specification of the behaviour, but to check critical cases.

3.2 The Pattern Library

In the following basic patterns are identified, giving the natural language representation to-
gether with the temporal logic formalization. In the description “events” mean all input or out-
put occurrences (i.e., elements of a monitored execution trace) that are relevant from the
point of view of property monitoring: function call, function return, input or output signal, mes-
sage received or sent, timer started or expired, state entered or left, predicate on a variable,
context change, configuration change etc.

The property patterns are divided into two groups: occurrence patterns and ordering patterns
(see below). The scopes of the patterns in an execution trace are illustrated in Figure 3.

 11

Global:

Before Q:

Q Q Q

Q Q Q

After Q:

Q Q R

Between Q and R:

Q R

Figure 3. Scope of a pattern in a trace w.r.t. events Q and R

 Occurrence patterns describe the occurrence of a given event during execution. The
following basic patterns are in this group:

o Universality (also known as Always or Henceforth): It describes a (portion of)
execution which contains only steps that are characterized with event P.

Property with scope Formalized property in CaTL

Event P occurs in each step of the
execution.

Globally P

Event P occurs in each step of the
execution before event Q.

Eventually Q implies (P Until Q)

Event P occurs in each step of the
execution after event Q.

Globally (Q implies Globally P)

Event P occurs in each step of the
execution between events Q and R.

Globally ((Q and not R and Eventu-
ally R) implies (P Until R))

o Absence (also known as Never): It describes a (portion of) execution in which
a certain event P does not occur.

Event P does not occur in the execu-
tion globally.

Globally (not P)

Event P does not occur in the execu-
tion before event Q.

Eventually Q implies (not P Until Q)

Event P does not occur in the execu-
tion after event Q.

Globally (Q implies Globally (not P))

Event P does not occur in the execu-
tion between events Q and R.

Globally ((Q and not R and Eventu-
ally R) implies (not P Until R))

 12

o Existence (also known as Eventually)1: It describes a (portion of) execution
that contains event P.

Event P occurs in the execution. Eventually (P)

Event P occurs in the execution be-
fore event Q.

not Q Until* (P and not Q)

Event P occurs in the execution after
event Q.

Globally (not Q) or Eventually (Q
and Eventually P))

Event P occurs in the execution be-
tween events Q and R.

Globally (((Q and not R) and (Even-
tually R)) implies (not R Until* (P
and not R)))

o Bounded existence: It describes a (portion of) execution in which an event oc-
curs at most a specified number of times. Here the most typical case is con-
sidered when the specified number of times is 2 (where “2 times” means
“twice”).

Event P occurs at most 2 times in the
execution.

(not P Until* (P Until* (not P Until*
(P Until* Globally not P))))

Event P occurs at most 2 times in the
execution before event Q.

Eventually Q implies ((not P and not
Q) Until (Q or ((P and not Q) Until
(Q or ((not P and not Q) Until (Q or
((P and not Q) Until (Q or (not P
Until Q)))))))))

Event P occurs in the execution after
event Q.

Eventually Q implies (not Q Until (Q
and (not P Until* (P Until* (not P
Until* (P Until* Globally not P))))))

Event P occurs in the execution be-
tween events Q and R.

Globally ((Q and Eventually R) im-
plies ((not P and not R) Until (R or
((P and not R) Until (R or ((not P
and not R) Until (R or ((P and not
R) Until (R or (not P Until R))))))))))

 Ordering patterns describe the relative order in which multiple events occur during
execution. The following basic patterns are in this group:

o Precedence: It describes a pair of events where the occurrence of the first
event is a necessary pre-condition for an occurrence of the second event (i.e.,
the occurrence of the second event is enabled by an occurrence of the first
event). Note that a Precedence pattern allows causes to occur without subse-
quent effects.

Event S precedes P in the execution. Eventually P implies (not P Until* S)

Event S precedes P in the execution
before event Q.2

Eventually Q implies (not P Until (S
or Q))

1
 In the pattern library, in order to formalize the often used natural language constructs, in some cases patterns

and their negation are also considered (e.g., Absence and Existence).

2
 Note that here „before event Q”, „after event Q”, and „between events Q and R” are scopes of the properties as

defined at the beginning of this section

 13

Event S precedes P in the execution
after event Q.

Globally not Q or Eventually (Q and
(not P Until* S))

Event S precedes P in the execution
between events Q and R.

Globally ((Q and not R and Eventu-
ally R) implies (not P Until (S or R)))

o Response: It describes a pair of events where an occurrence of the first event
must be followed by, or happen together with an occurrence of the second
event (i.e., there is a cause-effect relationship between the first and the se-
cond event). Also known as Follows or Leads-to. Note that a Response pat-
tern allows effects to occur without causes (this way Precedence and Re-
sponse patterns are not equivalent, response is just a “converse” of Prece-
dence).

Event S responds to P in the execu-
tion.

Globally (P implies Eventually S)

Event S responds to P in the execu-
tion before event Q.

Eventually Q implies (P implies (not
Q Until (S and not Q))) Until Q

Event S responds to P in the execu-
tion after event Q.

Globally (Q implies Globally (P im-
plies Eventually S))

Event S responds to P in the execu-
tion between events Q and R.

Globally ((Q and not R and Eventu-
ally R) implies (P implies (not R
Until (S and not R))) Until R)

o Chain precedence: Chain patterns in general describe requirements related to
combinations of event relationships. In case of chain precedence, a prece-
dence relationship is described, consisting of (sequences of) individual
events. First a 2 cause – 1 effect chain precedence relationship pattern is pre-
sented.

Events S followed by T precede P in
the execution.3

Eventually P implies (not P Until (S
and not P and Next (not P Until T)))

Events S followed by T precede P in
the execution before event Q.

Eventually Q implies (not P Until (Q
or (S and not P and Next (not P
Until T))))

Events S followed by T precede P in
the execution after event Q.

(Globally not Q) or (not Q Until (Q
and Eventually P implies (not P
Until (S and not P and Next (not P
Until T))))

Events S followed by T precede P in
the execution between events Q and
R.

Globally ((Q and Eventually R) im-
plies (not P Until (R or (S and not P
and Next (not P Until T)))))

Second, a 1 cause – 2 effects chain precedence relationship pattern is pre-
sented.

Event P precedes S followed by T in
the execution.

(Eventually (S and Next Eventually
T)) implies ((not S) Until P))

3
 In other words, it is not allowed that P occurs before S followed by T.

 14

Event P precedes S followed by T in
the execution before event Q.

Eventually Q implies ((S and (not
Q) and Next (not Q Until (T and not
Q))) Until (Q or P))

Event P precedes S followed by T in
the execution after event Q.

(Globally not Q) or ((not Q) Until (Q
and ((Eventually (S and Next Even-
tually T)) implies ((not S) Until P)))

Event P precedes S followed by T in
the execution between events Q and
R.

Globally ((Q and Eventually R) im-
plies ((not(S and (not R) and Next
(not R Until (T and not R)))) Until (R
or P)))

o Chain response: It describes a response relationship, consisting of (sequenc-
es of) individual events. First, a 2 stimuli – 1 response chain response rela-
tionship pattern is presented.

Event P responds to (S followed by T)
in the execution.

(Eventually (S and Next Eventually
T)) implies ((not S) Until P))

Event P responds to (S followed by T)
in the execution before event Q.

Eventually Q implies ((not (S and
(not Q) and Next (not Q Until (T and
not Q)))) Until (Q or P))

Event P responds to (S followed by T)
in the execution after event Q.

(Globally not Q) or ((not Q) Until (Q
and ((Eventually (S and Next Even-
tually T)) implies ((not S) Until P)))

Event P responds to (S followed by T)
in the execution between events Q
and R.

Globally ((Q and Eventually R) im-
plies ((not (S and (not R) and Next
(not R Until (T and not R)))) Until (R
or P)))

Second, a 1 stimulus - 2 responses chain is presented:

Events S followed by T respond to P
in the execution.

Globally (P implies Eventually (S
and Next Eventually T))

Events S followed by T respond to P
in the execution before event Q.

Eventually Q implies (P implies (not
Q Until (S and not Q and Next (not
Q Until T)))) Until Q

Events S followed by T respond to P
in the execution after event Q.

Globally (Q implies Globally (P im-
plies (S and Next Eventually T)))

Events S followed by T respond to P
in the execution between events Q
and R.

Globally ((Q and Eventually R) im-
plies (P implies (not R Until (S and
not R and Next (not R Until T))))
Until R)

As it turns out, the CaTL expressions provide a precise description (that is needed for moni-
tor source code generation), but their interpretation is difficult without some experience with
temporal logics. The natural language description helps the designer to select the corre-
sponding formalized property and understand its formalization. However, the natural lan-
guage description is often less precise, for example, in case of the property “Event P occurs
in each step of the execution before event Q”, the existence of Q is necessary for the satis-
faction of this property, but this is not evident from the natural language description (one may
consider that the property is satisfied when Q never occurs only a sequence of P).

 15

An example of an application of a pattern is the following:

 Application specific property: For the Control component of a remotely controlled sur-
veillance robot, receiving a StopCommand message from the Remote Operator guar-
antees that the StopAction signal will sent to the Motor component of the Robot.

 Pattern: Response with global scope: “Event S responds to P in the execution.”

 Instantiation of the pattern: S is the StopAction (signal), P is the StopCommand (mes-
sage).

 CaTL formalization of the property: Globally (StopCommand implies Eventually
StopAction)

The above listed patterns focused on the most frequently used temporal properties. These
can be extended with timing (e.g., to capture the time between stimulus and response) using
the timing extensions of the CaTL language.

3.3 Abstract Syntax for a Graphical Pattern Language

To describe and re-use patterns, we also propose a language (with its abstract syntax) that is
inspired by [2]. It allows the developer to describe properties over the system or its compo-
nents by using a combination of quantifiers, temporal patterns, and structural patterns on the
domain model(s). Accordingly, the language consists of four parts.

 Quantification of the formula (Figure 4). Here forAll or exists quantifiers can be used
together with the corresponding structural patterns (see below). Accordingly, the
property must be satisfied for all, or for one (depending on the quantifier) matches of
the structural pattern. Quantification patterns can be nested, or can contain a tem-
poral pattern.

Pattern

quantifier: Quantifier

QuantifiedPattern

StructuralPattern

forAll
exists

<<enumeration>>

Quantifier

TemporalPattern

Figure 4. The quantification of the formula

 Temporal patterns (Figure 5). The temporal patterns consists of the typical occur-
rence patterns (absence, universality, existence, bounded existence) and ordering
patterns (response, precedence, chain response, chain precedence) together with a
scope (globally, before, after, between). As presented in Figure 4, these temporal pat-
terns refer to structural patterns.

 16

n: Integer

BoundedExistence

OrderingPattern

TemporalPattern

Response

Globally

Scope

Absence

ExistenceUniversality Precedence

UpperBoundedLowerBounded

After Between Before

Chain response
Chain

precedence

OccurrencePattern

Figure 5. The temporal patterns

 Structural patterns (Figure 6) can be used in quantification or in a temporal pattern. A
structural pattern means a query on a model (by a pattern matching algorithm). In
quantification it returns all bound variables in found matches, while in case of a tem-
poral pattern it returns true if at least one match is found or false when no match is
found. The patterns presented in Figure 6 can be extended with additional language
constructs if needed (the presented set of patterns is sufficient to represent the major-
ity of practical properties).

BinaryPattern SimplePattern

OrPattern

name: String
isNegative: Boolean=false
condition: Condition=true
dynamic: Boolean

StructuralPattern

UnaryPattern

NotPattern

label: String

ModelElement

AndPattern ImpliesPattern

Figure 6. The structural pattern

 Pattern elements (Figure 7). A generic model element (ModelElement) serves as the
superclass for pattern elements that are specific to the metamodel of the domain
modelling language. In Figure 7 the root metamodel of statecharts is included togeth-
er with specific model elements for events and actions. A straightforward extension is
the inclusion of context fragments and configuration fragments as pattern elements,
this way the context and configuration metamodel elements should be inserted. All
classes are subclasses of ModelElement and have a label (for binding variables) and
a condition.

 17

Container

name: String
isDefault: Boolean=false

State

label: String
condition: Condition

ModelElement

guard: Condition=true
trigger: Condition=true

Transition

Basic Composite Orthogonal

Event Action

Figure 7. The pattern elements

The concrete syntax of this property language depends mainly on the concrete syntax of the
domain model (context and configuration models) and the software artefacts (in this latter
case the use of UML 2 model elements is a natural solution). In case of the quantifiers, tem-
poral and structural operators, graphical as well as natural language representation can be
used.

3.4 Tool Support to Combine Patterns

In the following, we specify a graphical tool that supports the composition of patterns.

The main elements of the concrete (graphic) syntax that can be used by the tool are depicted
in Figure 8.

Modelled
artefact

Metamodel
element

Graphic
representation

Example
proposition

Next state NextForm

And operator AndForm

System
property

Propositions Disconnected

Timing
constraint

TimingConst t < t0 + 5

Context
constraint

ContextConst e1 ~ e

Object
property

PropertyConst e1.a.speed < 10

Figure 8. The concrete syntax of the pattern language

As example, the representation of the property “After start, the next event is ‘Connected’ that
is followed by the event ‘Disconnected’ in less than 5 time units, where speed of object a is
less than 10 in the e1 context” is given in Figure 9.

 18

Figure 9. An example property constructed in the tool using the concrete syntax

The above mentioned categories of generic patterns as well as user-defined patterns (as
extensions) can be collected into a pattern store from which the patterns can be copied to the
graphical editor and then configured (parameterized by giving the concrete names of events,
properties, context fragments, timing constants etc.). The rules of composing and parameter-
izing patterns are determined by the syntax of the language.

There is a mapping from complex requirements (composed using the patterns and repre-
sented internally in the tool using the pattern language) to expressions of CaTL. This map-
ping is relatively straightforward as the pattern language followed the semantics of CaTL.

The textual CaTL representation belonging to the example presented in Figure 9 is the fol-
lowing:

X(connected and (t0=t) and X(disconnected and (t<t0+5) and (a.speed < 10) and e1~e)))

The steps of using the tool are summarized in Figure 10. Note that the requirements that are
composed from basic elements and patterns from the repository can be stored as user-
defined patterns for further use. The output of the tool is the CaTL expression that can be
used for synthesis of monitors or for the verification of designs.

The graphical interface of the tool shall contain the following main areas:

 The graphical editing of patterns: The elements displayed in this area are separated
into three layers (CaTL layer, Context layer, and Store layer) that can be turned on
and off in runtime.

 The property area. Here the properties of the model elements can be set or modified
(e.g., the name of an element, the corresponding reference, the parameters of ex-
pressions, etc.).

 The object structure belonging to the requirement (objects, properties, representation
files).

 The palette area: From this area elements and patterns can be copied to the editor
area by drag-and-drop operations. The five groups of elements are the following:

o Basic elements (atomic formulas as timing constraint, propositions, etc.);

o Temporal logic elements (next, globally, etc.);

o Boolean operators (And, Or, etc.);

o Context elements (context fragment, node, connection);

o Patterns (Absence, Existence etc.).

 19

Figure 10. The steps of using the pattern composition tool

4 Conclusions

This report aimed at the description of an approach to capture requirements for runtime mon-
itoring using a pattern library. This approach allows the formalization of safety rules and tem-
poral or trace-based reference behaviour.

On the basis of a new temporal logic variant, the Context-aware Timed Propositional Linear
Temporal Logic (CaTL), patterns for the typical safety and liveness properties were defined
and then the related tool was specified. The implementation of this tool based on a student
project is in progress.

 20

5 References

[1] Pnueli, A: The temporal logic of programs. Foundations of Computer Science, 18th An-
nual Symposium, pages 46–57, 1977.

[2] Meyers, B., Wimmer, M., Vangheluwe, H., and Denil, J.: Towards Domain-Specific
Property Languages: The ProMoBox Approach. In Proc. International Dependency and
Structure Modelling Conference (DSM 13), Indianapolis, USA, pp 39-44, 2013.

[3] Dwyer, M. B., Avrunin, G. S., and Corbett, J. C.: Property Specification Patterns for
Finite-state Verification. In Proceedings of the Second Workshop on Formal Methods in
Software Practice (FMSP), pp 7-15. ACM, 1998.

[4] Dwyer, M. B., Avrunin, G. S., and Corbett, J. C.: Patterns in Property Specifications for
Finite-State Verification. In Proc. International Conference on Software Engineering
(ICSE 1999), pp 411-420, 1999.

[5] About Specification Patterns. http://patterns.projects.cis.ksu.edu/ (accessed on January
6, 2015).

[6] Bitsch, F. Safety Patterns - The Key to Formal Specification of safety requirements. In
Proceedings of the 20th International Conference on Computer Safety, Reliability and
Security (SAFECOMP), pp 176-189. Springer-Verlag, 2001.

[7] Campos, J. C., Machado, J., and Seabra, E.: Property Patterns for the Formal Verifica-
tion of Automated Production Systems. In Proceedings of the 17th IFAC World Con-
gress, pp 5107-5112. IFAC, 2008.

[8] Campos, J. C., Machado, J.: Specification Patterns System for Discrete Event Systems
Analysis. International Journal of Advanced Robotic Systems, 10(315), 2013.

[9] Preusse, S., and Hanisch, H.-M.: Specification of technical plant behavior with a safety-
oriented technical language. In Proceedings of the 7th IEEE International Conference
on Industrial Informatics (INDIN), pp 632-637. IEEE, 2009.

