
Véletlen bit-generátor fejlesztése a NIST SP800-90B

dokumentumban foglalt kritériumok alapján

Designing and building a NIST SP 800-90 compliant

hardware entropy source

Kutatási jelentés

Dr. Levente Buttyán

2018.07.18.

2

1. Introduction

In this project, we developed a random number generator that uses hardware entropy sources.

The generator’s architecture is based on a NIST recommendation (NIST SP800-90), which

describes requirements and design specification for such generators. The bulk of the work was

carried out by a student, Csongor Ferenczi, and I supervised the project and provided technical

guidance. We designed the random number generator to be modular, each module being

responsible to a specific task, such as raw data collection from hardware sources, health test of

sources, mixing sources, conditioning, entropy estimation, and external interface through which

the generator can be called. Our implementation uses camera images as random sources, but

thanks to the modularity of our architecture, any kind of random source would be easy to use,

and the entire prototype is in general easy to configure and customize. We still have some

performance issues that we want to solve in future work.

2. The NIST model

The aforementioned NIST document provides a basic model for the entropy source which can

be seen below.

Figure 1: NIST’s entropy source model (from Section 2.2)

3

The core of the entropy source is a noise source which can be digital or analog. A digital noise

source can be the quickly changing top part of the RAM, analog noise source can be a thermal

noise of a diode for example. Every analog noise source has to be digitalized, to turn the raw

samples into bitstrings. Let’s call these bitstrings the raw data. We have to continuously run

health tests on this raw data in order to make sure that the noise source is in expected working

condition. If a health test fails, we have to decide whether the overall entropy source shall be

stopped, or it can recover itself. If we cannot serve entropy anymore, we must let the users know

this. The raw noise can be optionally conditioned, whose purpose is to remove the bias from

the noise. We wanted to make the entropy source more robust, so we decided, that we want to

have more noise sources, and we do not want to exclude the use of multiple kinds of noise

sources in the future, because we need a high throughput robust entropy source that can scale

well and handle even a datacenter’s need. For noise sources, we decided to use USB and IP

cameras for the prototype.

The NIST document specifies three interfaces (in Section 2.3), which one has to implement:

GetNoise, GetEntropy and HealthTest.

Figure 2: Operating modes and interfaces

The GetNoise interface’s task is to provide raw unmodified noise in case we want to validate

our solution in a NIST approved laboratory. It is important to note, that this interface is not

available during regular use. The GetEntropy interface is for providing entropy. The user calls

this interface by specifying the amount of entropy they want. The HealthTest interface is for

running on demand health tests, so this way the users can make sure that the entropy they got

is from a well-functioning noise source.

4

3. Our implementation of the model

Our prototype was written in Java and its schematic overview can be seen below.

For the sake of illustration, let’s assume that currently we use three noise sources: one USB

camera and two IP surveillance cameras. Every camera has its own RawNoiseHandler, which

can retrieve the frames the camera provides, run health tests on it, and if it passes, buffer the

data. Because every camera has a separate handler, if one gets faulty (temporarily or

permanently) the other noise sources can still provide entropy for the users. The USB camera

we use has a resolution of 640x480 pixel, and an average of 28 fps. Every pixel contains 3 bytes

of data, 1 byte for each channel (red, green and blue). This means, that we have about 25.8 MB

worth of data every second from this noise source. The IP cameras works with higher

resolutions, but lower framerates, so the data throughput is about the same. We implemented

three methods to fill the RawNoiseHandler’s buffer. The first and fastest method is to simply

put the data into the buffer as it arrives. This is very fast, but there can be some really significant

repetition in the data stream since pixels next to each other has a higher chance to have similar

values. However, as long as there is noise in the frame (which can come from the lighting,

sensor noise, traffic, etc.) we still get some randomness. The second method is to fill the buffer

only with hashes. Each frame gets hashed, and we only put the hashes into the buffer. This is

very slow, and we are throwing away a lot of data (1 MB of raw data becomes 64B of buffered

Figure 3: The structure of our implementation

5

noise), but this has the highest entropy / byte ratio. The third method is a modified Fisher-Yates

shuffling algorithm. We hash the frame, and create a permutation of the frame based on the

hash. This method does not give plus entropy to the system, but it does scrambles the data, so

the adjacent pixels are not next to each other anymore. The RawNoiseHandlers are connected

together by a NoiseSourceMixer, which takes noise from all of the sources, interleaves them

together and buffer it (more on this later). After the mixed noise leaves the buffer, it arrives to

the ConditioningComponent, which uses a hash algorithm to remove the bias from the noise.

This data is then passed to the EntropyHandler which buffers it, and estimates the minimum

entropy of the current buffer. The program can communicate with the outside world using a

REST API. When a user asks for X amount of entropy, the EntropyHandler can check the active

buffer’s minimum entropy, and calculate how much data do we have to return in order to

provide at least the desired amount of entropy. The data gets outputted in a JSON format. The

EntropyHandler uses a multi-buffer system, so this way we can parallelize the minimum

entropy estimation.

4. Conclusions

In this project, we designed and implemented a random number generator (entropy source)

based on a NIST recommendation (NIST SP800-90). We also integrated into our generator the

entropy estimators proposed by NIST and ran performanmce tests both in terms of speed and

amount of entropy. We can conclude that the amount of entropy we generate is acceptable even

when we use camera images that do not change quickly (but still has some noise). On the other

hand, entropy estimation is slow and it is currently a bottleneck in our implementation. At this

time, we run only the most conservative estimators to have acceptable speed for the entropy

estimation and to be able to serve entropy requests in practical situations. In the future, we plan

to optimize some of the entropy estimations to increase speed, and we also want to use other

types of random noise sources.

	1. Introduction
	2. The NIST model
	3. Our implementation of the model
	4. Conclusions

