
Bandwidth Estimation Between End Hosts in SDN
Technical Report

Péter Megyesi, Zoltán Mózar, Sándor Molnár
High Speed Networks Lab., Dept. of Telecomm. and Media Informatics,
Budapest University of Technology and Economics, Budapest, Hungary

E-mail: {megyesi, moczar, molnar}@tmit.bme.hu

Abstract—Software Defined Networking is an emerging
paradigm that is expected to revolutionize the building of com-
puter networks. With the decoupling of data and control plane
and the introduction of open communication interfaces between
the networking layers, SDN enables programmability over the
entire network promising rapid innovation in this area. The SDN
concept was already proven to work well successfully in cloud
and data center environments thus the proper monitoring of
such networks is already in the focus of the research community.
Methods for measuring QoS parameters such as bandwidth
utilization, packet loss and delay were already introduced in
the literature, but they lack of a solution for tackling down
the question of available bandwidth. It this paper we attempt
to fill this gap and introduce a novel mechanism for measuring
available bandwidth in SDN networks. We take advantage of
the SDN architecture and build an application over an SDN
controller that can track the topology of the network and the
bandwidth utilization over the links, and an by this able to
calculate the available bandwidth between two points in the
network. We also validate our method using the popular Mininet
network emulation environment.

I. INTRODUCTION

Today computer networks are everywhere. In our everyday
life we are almost always connected to the Internet and
since many business critical applications also need network
connection in most of the cases we are also using them in
our working hours. The different demands of heterogeneous
networks has led to a situation where nowadays IP networks
are very complex to both build and manage. The current
network architectures are very rigid thus it is especially very
hard to implement new features into them.

Software Defined Networking (SDN) offers a solution for
this problem with mainly the following features: i) it decouples
the data and control plane thus network devices become simple
forwarding elements (also called SDN switches), ii) control
logic is moved out to an external Network Operating System
(also called the SDN controller) which makes the decisions
about forwarding rules and communicates them to the SDN
switches via open protocol standards (e.g. OpenFlow), iii)
external applications can program the network using the ab-
straction mechanisms provided by the SDN controller. The
SDN concept has quickly gained significant focus by the
research community after the introduction of OpenFlow in
2008 [1].

In the last few years there have been several proposals
for monitoring Quality of Service (QoS) parameters in SDN

networks. They mostly tackle the problems of e.g. bandwidth
utilization [2]–[6], packet loss ratio [5], packet delay [5],
[7] and traceroute [8] measurements. We couldn’t find any
paper in the literature that deals with the problem of available
bandwidth (ABW) measurement in SDN.

However, ABW measurement can have significant impor-
tance for both service provider and application perspectives.
Service provider frequently use them for network manage-
ment and traffic engineering purposes. Furthermore, nowadays,
video streaming generates the biggest portion of Internet traffic
where ABW techniques plays a significant role in adopting to
the current network load.

The main contribution of this paper is to present a method
for available bandwidth measurement in Software Defined
Networks. Taking advantage of the features that SDN offers,
we present a solution for this problem in three different
networking scenarios: i) when paths in the network are fixed
thus we want to know the route between two points and the
associated available bandwidth, ii) when paths are not fixed
thus we want to find the best possible available bandwidth
between to points in the network and the associated route, iii)
the same scenario as the previous one in multipath environ-
ment thus we want to find the best possible multipath solution.
We also validate our method on a test environment using the
Mininet network emulation tool [9] and the Floodlight SDN
controller [10].

The reminder of this paper is structured as follows. Section
II presents the background of Software Defined Networks and
the related work. In Section III we present our approach for
measuring available bandwidth in SDN. Section IV describes
the test configuration that we used to validate our method. The
results of tests are presented in Section ??. Finally, in Section
V we conclude our work.

II. BACKGROUND AND RELATED WORK

Although Software Defined Networking only gained signif-
icant focus by the research community after the introduction
of OpenFlow [1], the main concepts of SDN root in earlier
works in the fields of active networks, control and data plane
separation and network virtualization [11]. In this paper we
follow the definition of SDN as presented in [12] which is
based on the following four elements.
• Control and data planes are separated from each other.

Network devices no longer have control functionalities,

they become simple forwarding devices.
• Forwarding rules are made based on a set of fields in the

packet headers (not by the destination of the packet). This
also guarantees unified behaviors of networking elements
such as switches, routes or firewalls.

• The control plane is moved to an external entity called
the Network Operating System (NOS) or SDN controller.
NOS is a software that runs on commodity hardware and
it can communicate the forwarding rules to the switches
via open standards.

• Third party application can program the network over
the NOS. The controller must also provide the necessary
abstractions and interfaces for serving these applications.

Fig. 1 presents the architecture of Software Defined Net-
works. The SDN controller can communicate with the switch
via the southbound API. Arguably, the most used standard for
southbound API is OpenFlow, but there are other proposals
for e.g. OVSDB [13], POF [14] or ROFL [15]. For NOS
platform there are many available open softwares such as
NOX [16], POX [16], Floodlight [10] or Ryu [17]. Moreover,
there are ongoing industrial consortia projects for data center
specialized controller platforms, for e.g. OpenDayLight [18]
or OpenStack [19]. As shown if Fig. 1, SDN applications can
program the network using the northbound API of the NOS.
However, these APIs are specific to controller software thus
most of the currently available SND applications are only able
to work over one NOS platform.

In the recent years, there has been several proposals for
monitoring Software Defined Networks. FlowSense [2] pro-
pose to use only the mandatory OpenFlow messages to mon-
itor the bandwidth utilization over the network. Although this
approach offers bandwidth monitoring with zero extra load
to the network, it has been proven to work inaccurately under
dynamic traffic conditions [4]. Other papers propose to use the
FlowStatsReq message in OpenFlow to poll the interface and
flow counters in the switches for bandwidth measurement [4]–
[6]. Furthermore, PayLess [4] and MonSamp [6] offer adaptive
sampling algorithms that can adopt for the current network
load. However, their approach are conflicting since PayLess
suggests to increase the sampling rate when the traffic load is
high (for increasing the accuracy) whereas MonSamp suggests
to decrease the sampling rate under high load (so the higher the
network load the lower monitoring load should be generated).

OpenNetMon [5] also offers solution for packet loss and
delay monitoring as well. For packet loss measurement it polls
the flow counters in the ingress and egress switches of a given
flow and calculates the difference. For delay measurement
it uses the SND controller to send packet probe packets to
the network along a given path and than looped back to the
controller. Using the round trip times to the ingress and egress
switches the tool is able to calculate the delay for the given
path. Phemius and Bouet [7] also use the same approach for
delay measurement but they observed a constant difference
between the measured and reference time values. They also
present a method for calculate this value and calibrate the
delay measurement according to this calculation.

SDN switch

SDN switch

SDN switch

SDN switch

Network Operation System

Northbound API

Southbound API

Monitoring
Traffic

Engineering
Network

Virtualization

Network Applications
Business

Applications

Control Plane

Data Plane

Fig. 1: The architecture of Software Defined Networks

We found that the current literature lacks of a solution
for measuring available bandwidth in SDN. Furthermore, a
comprehensive taxonomy of different elements in Software
Defined Networking can be found in [12].

In classical networks available bandwidth techniques are
classified into active and passive techniques. Passive methods
use multiple measurement points in the network to monitor
the bandwidth utilization, the packet loss ratio and the packet
delay. With the synchronization of this measurement one can
estimate the available bandwidth. However, these methods
are very complex to deploy thus they are rarely used in
practice. The active methods operate by sanding probe packet
to the network. Most commonly used tools like Iperf [20] or
Ookla [21] use a single TCP flow to saturate the network path.
Since this method suppresses other traffic on the network they
are rarely used for professional purposes.

Active ABW methods in the literature is usually categorized
into packet gap and packet rate models. Packet gap tools such
as Spruce [22] or Traceband [23] use packet pair to calculate
the ABW. Based on the difference of the entry and the exit
time gap of the packet pairs they are able to estimate the load
on the bottleneck link, thus along with the bottleneck link
capacity they are able to calculate the available bandwidth. On
the other hand, packet rate tools use multiple series of packet
with different rates. They iteratively increase the sending rate
until congestion occurs thus they are able to estimate the
available bandwidth without any knowledge of the network.
Examples for packet rate tools include PathLoad [24] and
PathChrip.

However, most of the ABW tools that are currently available
can only work in certain networking scenarios after precise
calibration [25]. In our approach we use a passive available
measurement method by taking advantage of the NOS on
the architecture of SDN. We use the northbound API of the
Floodlight controller to discover the topology of the network
and to monitor the bandwidth utilization of the links. With this

TABLE I: Notation list

Notation Description

G(V,E)
the directed graph representation of the network
topology with node set V and edge set E

ei ith link in the network topology graph
ci the capacity of ei
bi the current bandwidth load on ei
ai the available capacity on ei, ai = ci − bi

PA→B the set of all available paths from A to B

information we are able to calculate the available bandwidth
for any path in the network in any given time.

III. MEASURING AVAILABLE BANDWIDTH IN SDN
NETWORKS

In our available bandwidth application we take advantage
of the network abstractions provided by the NOS. Using
northbound API of the SDN controller we are able to query
all the switches operating in the network and links between
them. Firstly, our application uses this information to build
up a network topology graph G(V,E), where the node set V
corresponds to the switches and the edge set E corresponds
to the links (for further notations see Table I). Furthermore,
we assume that the capacity ci of every link is known in the
network. This is a viable assumption since the type of every
link is known by the NOS, and if any further policy limits the
bandwidth on a given link the network operator should have
information about it.

The application is also able to measure the current load
bi of every link. For this we use similar approach that was
previously presented in papers [4]–[6] thus we periodically
poll the counters in the SDN switches using the FlowStatsReq
OpenFlow message. This method is already proven to be
working effectively in SDN and it provides an easy solution for
measuring the bandwidth utilization over the entire network.
After this step, we are able to calculate the available capacity
ai on every link in the network. Based on the ai values we are
able to calculate the available bandwidth on a given P path
by the following formula

ABWP = min
ei∈P

ai. (1)

Host Server

Virtual Machine

Mininet Network
Emulation

Floodlight
Controller

ABW
Application

Fig. 2: The assembled test configuration

The application is also able distinguish three different
scenarios and calculate the ABW according to it. These cases
are the following.

1) ABW on fixed paths. In this scenario the routing
policies are fixes thus for a given flow first we have
to find out it’s route on the network and than calculate
the available bandwidth using Eq. (1). For this the
application can use the northbound API of the NOS,
e.g. Floodlight’s REST based API provides an interface
for telling the route of a flow in the network (with any
given headers on a given entry point) according to the
policies set up in the controller.

2) Best available path. In this case we have to find the path
P between two points in the network where the available
bandwidth is the largest. This can be expressed by the
following equation:

ABWA→B = max
P∈PA→B

min
ei∈P

ai. (2)

For solving this equation we use a modified Dijstra
algorithm where the metric of a path is not measured
by the sum of the edges’ capacities (distances) but by
Eq. (1). This algorithm also gives the best possible path
for the best AWB solution in O(|E|+ |V | log |V |) (just
like a normal shortest-path Dijstra algorithm would).

3) Multipath scenario. In this case we can use multiple
paths between two points for flowing the traffic in the
network. We consider this as an important scenario since
the SDN architecture can easily enable solutions for
multipath routing, for e.g. using MPTCP in the transport
layer [26]. In this case we face off a classical max-
flow problem over the network topology graph G(V,E)
which can be solved by the Ford-Fulkerson Algorithm
in O(|E|f) complexity (where f is the maximum flow
in the graph).

IV. TEST CONFIGURATION

Fig. 2 presents the schematics of the assembled test con-
figuration. We use Mininet for network emulation and Flood-
light [10] as SDN controller. Mininet is running inside a virtual
machine1 on the host server using VirtualBox. We chose to
run Floodlight directly in the host server since we often faced
load issues when we run it inside the virtual machine. For
further reference, we collected the used hardware and software
versions in Table II.

The ABW application also runs in the Mininet virtual
machine. The reason for that is that parallel with the ABW
calculation method presented in Section III, we also use a
kernel polling mechanism for generating reference values for
the measurements. Mininet creates separate network interfaces
in the Linux system for every interface of the emulated SDN
switches. This allows us to use IPtables for ground truth
data generation since this method provides more accurate
measurement of the traffic on the interfaces. Packets between

1Virtual machine image was downloaded from Mininet website:
https://github.com/mininet/mininet/wiki/Mininet-VM-Images

TABLE II: Configuration hardware and software

Host CPU Intel Xeon E5-2640 v2 @ 2.00GHz
Host Memory 32 GB

Host OS Ubuntu 14.04, Linux kernel 3.13.0-24
Virtualization VirtualBox 4.3.20

Guest OS1 Ubuntu 14.04 64-bit
VM configuration 4 CPU cores, 2 GB memory
Mininet version 2.2.0

Floodlight version 1.0

the ABW application and the Floodlight controller can (and in
some of our test cases will intentionally) suffer variable delay
thus this method can only approximate the actual traffic.

Fig. 3 sketches the network topology we created in Mininet
for testing our AWB application. S1, S2 and S3 creates a
classical Y topology which is frequently used as a testbed
for testing ABW applications [25]. The idea is to set up the
link between S1 and S2 to serve as the bottleneck link (lowest
capacity on the route) and then use H3 to generate cross traffic
on link between S2 and S3. If this cross traffic is high enough,
the bottleneck link and tight link will become different which
can interfere the calculations of current ABW tools [25]. To
realize such scenario, we use TrafficControl to maximize the
bandwidth capacities of the links and also, (in some scenarios)
to add variable delay between the polling application and the
Floodlight controller.

The default route policy in Floodlight won’t send any
traffic through S4. This enables us to use the feature in our
application which can predict the best possible alternative
route even if that’s not the default one. If the cross traffic from
H3 to H4 is larger than 10 Mbps than the alternative route
through S4 would provide a better path with larger available
bandwidth.

Furthermore, we use D-ITG [27] for traffic generation which
was proven to work much reliable than other traffic generation
platforms [28]. Using D-ITG, we are able generate constant
bit rate traffic with very precise inter departure times, variable
bit rate traffic using different stochastic distributions or replay
traffic according to previously captured traces. D-ITG also uses
logging mechanism for further reference tracking of the packet
inter departure times. Moreover, hosts are configured with the
CPU isolation method presented in Mininet HiFi [29] thus they
can’t interfere the traffic generation process of each other.

Possible scenarios to present:

1) Static scenrio with some CBR traffic on the net.
2) VBR traffic using Pareto distribution.
3) VBR traffic using variable delay.
4) Long term scenario using real traffic pattern.

V. CONCLUSION

In this report we presented an application that is able to
measure end-to-end available bandwidth (ABW) in Software
Defined Networks (SDN). Our application uses the Network
Operating System (NOS) to generate a graph representation
of the network topology and then use OpenFlow messages
to track the bandwidth utilization over every link in the
network. Based this information, we are able to calculate the
ABW on every path in the network. We also assembled a
test environment using Mininet for network emulation and
Floodlight for SDN controller in order to test our application
in various network conditions. Our results show that using
the presented technique for ABW measurement in SDN is
satisfactory for both short and long time scale measurements.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Computer Communnication Review,
vol. 38, no. 2, pp. 69–74, Mar. 2008.

[2] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. Madhyastha,
“Flowsense: Monitoring network utilization with zero measurement
cost,” in Passive and Active Measurement, ser. Lecture Notes in Com-
puter Science, 2013, vol. 7799, pp. 31–41.

[3] M. Jarschel, T. Zinner, T. Hohn, and P. Tran-Gia, “On the accu-
racy of leveraging sdn for passive network measurements,” in Aus-
tralasian Telecommunication Networks and Applications Conference
2013 (ATNAC ’13), Nov 2013, pp. 41–46.

[4] S. Chowdhury, M. Bari, R. Ahmed, and R. Boutaba, “Payless: A low
cost network monitoring framework for software defined networks,” in
Network Operations and Management Symposium (NOMS), May 2014,
pp. 1–9.

S1

S4

S2

S3

10 Mbit 20 Mbit

10 Mbit5 Mbit

10 Mbit

H1

H2

H4

H5

H3

Fig. 3: The test topology in Mininet

[5] N. van Adrichem, C. Doerr, and F. Kuipers, “Opennetmon: Network
monitoring in openflow software-defined networks,” in Network Opera-
tions and Management Symposium (NOMS), 2014 IEEE, May 2014, pp.
1–8.

[6] D. Raumer, L. Schwaighofer, and G. Carle, “Monsamp: A distributed sdn
application for qos monitoring,” in Federated Conference on Computer
Science and Information Systems (FedCSIS), Sept. 2014.

[7] K. Phemius and M. Bouet, “”monitoring latency with openflow”,” in 9th
International Conference on Network and Service Management (CNSM),
2013, pp. 122–125.

[8] K. Agarwal, E. Rozner, C. Dixon, and J. Carter, “Sdn traceroute: Tracing
sdn forwarding without changing network behavior,” in Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking,
2014, pp. 145–150.

[9] B. Lantz et al., “A network in a laptop: Rapid prototyping for software-
defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks, 2010, pp. 19:1–19:6.

[10] “Floodlight,” retrieved: March, 2015. [Online]. Available:
http://www.projectfloodlight.org/

[11] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: An intellectual
history of programmable networks,” SIGCOMM Computer Communica-
tion Review, vol. 44, no. 2, pp. 87–98, April 2014.

[12] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
Jan 2015.

[13] B. Pfaff and B. Davie, “The Open vSwitch Database Management
Protocol, RFC7047,” https://tools.ietf.org/html/rfc7047.

[14] H. Song, “Protocol-oblivious forwarding: Unleash the power of sdn
through a future-proof forwarding plane,” in Proc. of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’13, 2013, pp. 127–132.

[15] M. Sune, V. Alvarez, T. Jungel, U. Toseef, and K. Pentikousis, “An
openflow implementation for network processors,” in Third European
Workshop on Software Defined Networks (EWSDN), Sept 2014, pp. 123–
124.

[16] “NOX and POX SDN Controllers,” retrieved: March, 2015. [Online].
Available: http://www.noxrepo.org/

[17] “RYU network operating system,” retrieved: March, 2015. [Online].
Available: http://osrg.github.com/ryu/

[18] “OpenDayLight Project,” retrieved: March, 2015. [Online]. Available:
http://www.opendaylight.org

[19] “OpenStack Project,” retrieved: March, 2015. [Online]. Available:
https://www.openstack.org/

[20] “Iperf,” retrieved: March, 2015. [Online]. Available:
http://sourceforge.net/projects/iperf/

[21] “Ookla Speedtest,” retrieved: March, 2015. [Online]. Available:
http://www.speedtest.net/

[22] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of avail-
able bandwidth estimation tools,” in Proc. ACM SIGCOMM conference
on internet measurements, Oct. 2003, pp. 39–44.

[23] C. D. Guerrero and M. A. Labrador, “Traceband: A fast, low overhead
and accurate tool for available bandwidth estimation and monitoring,”
Computer Networks, vol. 54, no. 6, pp. 977–990, 2010.

[24] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measurement
methodology, dynamics, and relation with tcp throughput,” IEEE/ACM
Transaction on Networking, vol. 11, no. 4, pp. 537–549, Aug. 2003.

[25] A. Botta, A. Davy, B. Meskill, and G. Aceto, “Active techniques
for available bandwidth estimation: Comparison and application,” in
Data Traffic Monitoring and Analysis, ser. Lecture Notes in Computer
Science, 2013, vol. 7754, pp. 28–43.

[26] B. Sonkoly et al., “Sdn based testbeds for evaluating and promoting mul-
tipath tcp,” in Proc. IEEE International Conference on Communications
(ICC 2014), June 2014, pp. 3044–3050.

[27] A. Botta, A. Dainotti, and A. Pescapé, “A Tool for the Generation
of Realistic Network Workload for Emerging Networking Scenarios,”
Computer Networks, vol. 56, no. 15, pp. 3531 – 3547, 2012.

[28] ——, “Do you trust your software-based traffic generator?” IEEE
Communications Magazine, vol. 48, no. 9, pp. 158–165, Sept 2010.

[29] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proc. of the 8th International Conference on Emerging Networking
Experiments and Technologies (CoNEXT ’12), 2012, pp. 253–264.

