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1 Abstract

Packet classi�cation is concerned with categorizing packets into tra�c aggregates according to
some con�gurable set of rules and apply some collective action to the aggregates' packets. It is
a fundamental ingredient in essentially any network functionality today, from the elementary,
like Internet packet forwarding, to the complex, like �rewalls, OpenFlow switches, or load-
balancers. Packet classi�cation must be done for all packets received by a device, preferably
at line rate, and, what is more, over possibly hundreds of thousands of rules. This makes
e�cient hardware and software implementations extremely di�cult, or may in fact inhibit any
sorts of fast implementation whatsoever.

In this project, we have studied the question of how to boost software-based packet clas-
si�cation performance by exploiting data level parallelism built into every modern CPU. We
have proposed a new classi�er decomposition scheme, whereas a huge and complex classi�er is
disassembled into a set of smaller and simpler classi�er modules, substantially curtailing the
complexity of rule matching by reducing the lookup semantics at each module to quasi-exact
matching and permitting to do lookups across multiple modules simultaneously.

The report contains the results of the �rst evaluation of the proposed scheme and an initial
comparison to the Intel DPDK built-in librte_acl classi�er library. Our initial results are
promising: we provide empirical evidence that even very large classi�ers can e�ectively be
decomposed into only a couple of dozen modules (which, again, can be searched in parallel)
and we present preliminary runtime performance analysis to show that this may yield improved
classi�cation performance when implemented in a real classi�er.
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2 Motivation

� Goal: exploit data level parallelism for fast and memory-e�cient software packet clas-
si�cation

� main motivation is that today's CPUs come with advanced SIMD instruction sets o�-the-
shelf and packet classi�cation, like most common network functions, lends itself readily
to a data-parallel implementation:
� execute same classi�cation program simultaneously (SI: �Single Instruction. . . �)
� on multiple packets (MD: �Multiple Data�)
� SI + MD = SIMD !

Figure 1: Packet classi�cation using data level parallelism

2.1 General de�nition and notation

� a classi�er K is a prioritized list of n rules (�lter-action pairs), each de�ned on w bits:

K = {Ri → ai : i ∈ [1, n]},

where Ri ∈ {0, 1, ∗}w are �lters and ai ∈ [0, A−1], the actions, are identi�ed by integers
� we use the terms "rule" and "�lter" interchangeably
� each rule Ri is represented by a subset of {0, 1, ∗}w and some word r matches rule Ri,
that is, r ∈ Ri, if and only if ∀j ∈ {1, 2, . . . , w} : Rij 6= ∗ =⇒ rj = Rij

� we assume priorities are aligned with indices: Ri ≺ Rj ⇔ i < j
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3 Disjoint classi�er decompositions

3.1 A Naive SIMD Implementation: Linear Search

� a SIMD register can contain up to 256 (in AVX2) or 512 (in AVX-512) bits
� a naive strategy to exploit this would be to

1. load packet header into a SIMD register

2. load next rule into another SIMD register

3. do the matching on all the bits of the header against the rule simultaneously (using
SIMD)

4. do this iteratively until either a match is found or all rules have been processed this
way

� a possible implementation using AVX2:

// cycle through all rules

for(unsigned int i = 0; i < n; i++){

// load packet into SIMD register

__m256i packet =_mm256_load_si256(packet);

// load rule into SIMD register part 1: positions of don't care bits

__m256i rstar =_mm256_load_si256(rules[i].star);

// load rule into SIMD register part 2: rest of the mask bits (0 or 1)

__m256i rbit =_mm256_load_si256(rules[i].bit);

// matching: mask with don't care bits

__m256i masked =_mm256_and_ps(packet, rstar);

// matching: compare the rest

__m256i comp =_mm256_cmpeq_epi32(masked, rbit);

// evaluate results

int result =_mm256_movemask_ps(comp);

if(comp == 255){

// rule i matches

...

break;

}

}

// no match found

� the linear search strategy is of course sensitive to the number of rules n: needs O(n)
time (the even more naive full scalar implementation would need O(nw) steps, so we
spared a w factor with SIMD)
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Figure 2: Linear Search: The more bits we consider the faster the linear search, but still,
iteratively matching a single packet against 4M rules takes 50 milliseconds

3.2 Improving the naive implementation

� the problem with the naive implementation is that it looks at too many bits, that is,
rules/headers are too wide for us to squeeze multiple rules and headers into a single
SIMD register and parallelize across rules/packets

� our idea (to be fair, the idea belongs to Kirill Kogan, our collaborator from IMDEA
Networks, Spain) is to look at only a smaller subset of rule/header bits at a time, say,
only 8 or 16 bits

� either we can establish that there is no match on these bits for the current rule, in which
case we can carry on with matching the rest of the rules, or we have a candidate match

� then, do a false positive check on candidate matches to verify that they indeed match
(not just on the subset of bits considered but on all bits) and then �nd the maximum
priority candidate and return it as a match

� now, since we consider only a smaller number of bits in each step we can �t multiple
rules/headers into a single SIMD register and do matching simultaneously

3.3 Disjoint decompositions

� our decompositions are special since we do not want modules to return multiple candidate
matches (which will then all need to be false-positive-checked), just a single one

� it is easy to see that the following property, called disjointness (or order-independence),
is the simplest criterion that warrants this

� Disjointness: rules R1 and R2 are (�lter-)disjoint, if there is no packet/header p ∈
{0, 1}w so that p ∈ R1 and p ∈ R2

� a classi�er K is disjoint of all rules in K are pairwise disjoint

3.4 Problem formulation

� of course we want to look at the smallest number of relevant bits (to maximize SIMD par-
allelism) and we want to get the fewest possible modules (each module incurs additional
runtime cost), which gives rise to a nice optimization problem
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Figure 3: Disjoint Classi�er Decomposition

� Classi�er reduction: given classi�er K(n,w) and bit positions B ⊆ [1, w]b with b ≤ w,
the reduction KB of K to bit positions B is de�ned as KB = {[Rij ]→ ai : i ∈ [1, n], j ∈
B}

� Classi�er partitioning: given classi�er K(n,w) = {Ri → ai : i ∈ [1, n]} and some
partition of the index set C = {C1, . . . , Ck} where

⋃
Ci = [1, n] and Ci ∩ Cj = ∅

whenever i 6= j, the classi�er partition KC is given by exactly k classi�er groups on C:
KC = {KCj = {Ri → ai : i ∈ Cj}, j ∈ [1, k]}

� Minimal Disjoint Classi�er Decomposition: given a classi�er K(n,w), integers
b and k, and bit positions B = {Bj ⊆ [1, w]b, j ∈ [1, k]}, decide whether a classi�er

partition KB
C exists so that each K

Bj

Cj
is disjoint

� we consider only the version where an oracle �xes the bit positions for each module Bj ;
of course the better we choose bit positions the smaller decomposition we might get;
however, the full-�edged version of the problem (that includes picking Bj bit positions)
is even more di�cult

� the role or order-independence in classi�er decompositions is �rst explored in [1], minimal
disjoint decompositions are also introduced there

� we have already tackled the problem to some degree in [2], namely, we explored minimal
decompositions for classi�ers that contain pre�x rules only; herein we generalize those
�ndings to general classi�ers and give some new analyses
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4 Algorithms

� since the problem is very di�cult, we start with a simple greedy heuristics which we
shall later endow with useful enhancements to improve e�ciency

4.1 A fast heuristics

� Greedy partition: given K(n,w) and b, iteratively

1. draw some random bit positions B ⊆ [1, w]b

2. move all rules that are disjoint on B to a new module/subclassi�er

3. repeat until all rules are removed from K

� complexity is O(n2b)
� Observation: on termination, no rules can be placed into modules found before the
rule's own module (weak optimality)

4.2 Extensions

� Bit-selection strategies: how to select the bit positions for each module
� choose the same �xed bit positions for each module: ∀j : Bj = {0, 1, ..., b − 1}
(name: uniform)

� choose bit positions randomly (name: random)
� choose consecutive bit positions (with wrap-around if kb > w): B1 = {1, ..., b},

B2 = {b + 1, ..., 2b}, . . . , Bi = {w − b + 1...w}, Bi+1 = {1, ..., b}, . . . (name:
next-bits)

� choose a random number 0 ≤ k < w
b then the selected bits are kb+1, kb+2, ..., (k+

1) ∗ b (name: semi-random)
� a version of the above when bit positions are aligned at byte-boundaries, which will
make masking simpler in the implementation (name:semi-random2)

� Preprocessing: given B for a module, order the rules in increasing order of the number
of * bits in the positions de�ned by B (will take rules with fewer *s �rst, improving
utilization of the module) (name: order)

� Greedy partition with star splitting: after doing the greedy partitioning algorithm,
try to move rules from rearward modules to front ones by taking a rule in the last group,
split a random *, try to add the resultant 2 rules to some former group, and do until no
rules can be placed to former groups

� Quasi-independence: generalize the notion of rule disjointness, namely, in each group
allow at most k rules to match for each possible packet header

� of course, that will induce multiple false positive checks but, hopefully, less modules
� so traditional disjointness is $1$-independence, $2$-independence is when each packet
matches at most 2 rules in a group, etc

� k-independent greedy partitioning algorithm: take a "normal" greedy partition
and then merge some k buckets de�ned on the same bit positions (result trivially k-
independent)
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Figure 4: Quasi-disjoint Classi�er Decomposition

4.3 Results

� we implemented the algorithms to see how the default heuristics and the above extensions
fare

� input is always a random classi�er (usually containing 10K rules); this allows to �ne-
tune model parameters (mostly p) but distorts the results signi�cantly; all results will
be re-checked on ClassBench classi�ers
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4.3.1 Greedy classi�er partitioning: the e�ects of heuristics

� we chose b = 8 and b = 16, which both allow byte-aligned masking and disjoint rule
matchers to be implemented with simple arrays of reasonable size

Figure 5: Disjoint Classi�er Decomposition with heuristics when b = 8: n = 10000, w = 128,
x axis: p ∈ [0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35], y axis: number of modules with the plain
greedy algorithm plus with di�erent extensions

Figure 6: Disjoint Classi�er Decomposition with heuristics when b = 16: n = 10000, w = 128,
x axis: p ∈ [0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35], y axis: number of modules with the plain
greedy algorithm plus with di�erent extensions, note that the negative values are due to the
error of the estimation for small p
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� messages: See Fig. 5 and Fig. 6
� we can decompose a random classi�er into roughly 100 modules when b = 8 and
only about 20 for b = 16

� the greedy algorithm seems highly e�ective even with absolutely blind rule selec-
tion!!

� the heuristics improve signi�cantly, except star-splitting
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4.3.2 Greedy classi�er partitioning: distribution of number of rules in each mod-

ule

Figure 7: Disjoint Classi�er Decomposition and the distribution of rules per module: n =
10000, w = 128, b = 8, p = 0.3, x axis: modules one by one, y axis: number of rules in the
module (with and without di�erent extensions)

� messages: See Fig. 7
� distribution is very biased, �rst modules are much mode loaded than subsequent
ones, we should look into this more deeply
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4.3.3 Greedy classi�er partitioning: k-independence

Figure 8: k-independent Classi�er Decompositions for increasing k: n = 10000, w = 128,
b = 8, p = 0.3, plain greedy partitioning

� messages: See Fig. 8
� quasi-disjointness is highly e�ective: already setting k = 2 halves the number of
modules and all subsequent increases seem to do the same

� of course, we pay runtime cost for that; we still need to decide whether this decrease
in module count is worth the increase in false-positive-check load (see later)
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5 Implementation and numerical evaluations

� we created an initial runtime to test the viability of the approach
� the implementation works with random data, but it is deliberately designed to do ev-
erything that a real implementation will need to do for classi�cation

� next step will be to integrate the greedy decomposer and the runtime into DPDK

5.1 SIMD strategies

� only the number of SIMD register loads count, the running time of the SIMD instructions
themselves is negligible

� factor in that the number of SIMD registers is rather limited (8 for SSE)
� so we need to minimize the number of register loads: SIMD strategies

5.1.1 Per-packet strategy: 8P1M

� match the �rst rule on a batch of k packets, then load the next rule, etc.
� needs n + k register loads to match n rules on k packets (initially load k packets then
load a new rule n times)

� for k = 8 we get the 8P1M strategy

Figure 9: Per packet strategy

5.1.2 Per-rule strategy: 1P8M

� match the same packet on the �rst k rules, then load the next packet and the next k
rules, etc.

� needs 2n register loads to match n rules on k packets (in each round load k rules plus k
packets, and there are n

k rounds)
� for k = 8 we get the 1P8M strategy

5.2 Implementation considerations

� we assume x86-64/AVX2 (16x256 bit registers)
� we need the following functionality for our runtime

� masking: to select relevant bits (wrt to each module) from the header
� rule matcher: to match (k-)disjoint rules in each module
� false-positive check: to validate whether matching rule (wrt to the relevant bit
positions) indeed match
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Figure 10: Per rule strategy

� priority comparator: to select the highest priority rule across modules that
matched

� the rule-matcher in each module is a simple array of 2b values
� for each 2b di�erent value that can appear (after masking) in the packet header,
the array speci�es the corresponding pair of rule id and priority values

� this way, rule matching boils down to simple array lookup (can use 32-bit gather)
� bit positions are some consecutive b = 8 or b = 16 bits for each module

� SIMD implementations lack many useful operations for small bit widths (no load/mask/-
gather for _epi8 and _epi16)
� we chose 32 bits (_epi32) as the basic unit of parallelization
� 8 or 16 bit headers/rules are expanded to 32 bits
� this immediately wastes 16 bits per SIMD lane
� (rule id, priority) pairs are also encoded on 32 bits, so lookup result will again yield
32 bit values

� the per-packet strategy needs fewer register loads, we went with this strategy: we im-
plemented the 8P1M strategy
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5.3 Pseudocode

� the implementation uses the below pseudocode; note that currently the code does mul-
tiple loads for each packet, code rewrite is underway to avoid that

� parameters are set up beforehand even at classi�er-construction time and/or runtime,
at receiving the packet batch:
� pack: base address for packet batch
� masks: base address for array containing mask for each module
� module: lookup array for each module
� rstar and rbit: "don't care" mask and e�ective bits for each rule

for(k=0;k<p;k+=8){ // for each batch of 8 packets

for(j=0;j<m;j++){ // for each module

// MASK relevant bits of the packets with preloaded masks

__m256i mask = _mm256_load_si256(masks + j*8);

__m256i hmask = _mm256_i32gather_epi32(pack + k*b, mask, 1);

hmask =_mm256_and_ps(hmask, X);

// MATCH masked bits in the module

__m256i match = _mm256_i32gather_epi32(module[j]), hmask, 4);

uint32_t *mp = (uint32_t *)&match;

// FALSE POSITIVE CHECK for each packet

for(i=0;i<8;i++){

__m256i A =_mm256_load_si256(pack + (k+i)*b));

__m256i B =_mm256_load_si256(rstar + (mp[i]/exp_12)*b));

__m256i C =_mm256_load_si256(rbit +(mp[i]/exp_12)*b));

__m256i D =_mm256_and_ps(A, B);

__m256i E =_mm256_cmpeq_epi32(C,D);

int fpc =_mm256_movemask_ps(E);

// PRIORITY COMPARISON

if(fpc == 255 && mp[i] > result_per_packet[k+i])

result_per_packet[k+i]=mp[i];

}

}

}
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5.4 Evaluation

� used random data for classi�ers, results are �t from the simulations

Figure 11: (Expected) packet rate as the function of the number of modules for 8-bit (b = 8)
and 16-bit (b = 16) modules

Figure 12: (Expected) packet rate as the function of the number of rules for 8-bit (b = 8)
and 16-bit (b = 16) modules

� messages: see Fig. 11 and Fig. 12
� 8-bit implementation is twice as fast as 16-bit one, when only looking at the number
of modules

� reason is deteriorating cache performance: looking at the numbers with perf, we
see that the 16-bit implementation (b = 16) causes 55 times more cache misses than
the 8-bit implementation (b = 8)

� but since a 16-bit module can hold more rules, the 16-bit implementation is still
faster if we look at the overall number of rules

� we can expect line-rate performance (with 64 byte packets) even for several thou-
sand rules

� of course, real performance will be worse than this due the the unavoidable overhead
of operational code
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6 The DPDK built-in classi�er librte_acl

� the DPDK already contains a SIMD classi�er implementation librte_acl

6.1 Features

� parallel lookup on multiple rule sets (OpenFlow, ACL, etc.), lookup for each category
in a single run

� arbitrary rule priorities
� �exible header �eld de�nitions (can match on arbitrary protocol)
� range and mask searches in rules
� batch lookup a'la DPDK
� hard resource limits on the classi�er data structure
� multiple SIMD lookup backends (scalar, SSE, SSE4, AVX2)

6.2 The librte_acl API

� rte_acl_create(): create an rte_acl_ctx context
� struct rte_acl_field_def and struct rte_acl_rule: header �eld defs and the ac-
tual rules

� rte_acl_add_rules(): �ll up the classi�er
� rte_acl_build(): construct the classi�er data structure from the given rules
� rte_acl_classify(): do classi�cation on packet batch, with a separate SIMD backend
for each CPU arch., best backend selected automatically

� rte_acl_classify_alg(): enforce speci�c SIMD backend

6.3 The classi�er data structure

� classi�cation is performed on (possibly multiple) multibit pre�x trees (tries), stride=8
� overlapping rules are statically disambiguated by priority when building/updating the
tries

� categories share trie(s), so a single trie may contain the results for multiple independent
classi�ers

� supports dynamic rule addition, but no rule modi�cation/delete
� trie traversed in 4-byte chunks (packet read in 4 byte units) except the �rst pass that is
done out of the main loop and reads only a single byte

� the trie may still take too much space due to cross-product e�ects between di�erent rules
and the related combinatorial explosion

� to conserve some space, librte_acl can split rule-set into non-intersecting subsets and
construct a separate trie for each, at the cost of increased runtime classi�cation time

18



6.4 Results

Figure 13: librte_acl packet rate for increasingly larger random IPv4 5-tuple classi�ers

Figure 14: librte_acl number of lookup tries for increasingly larger random IPv4 5-tuple
classi�ers

� messages: See Fig. 13, Fig. 14, and Fig. 15
� librte_acl achieves 10G line rate with 64 byte packets on small classi�ers
� performance quickly drops as classi�er size grows
� this is due to the increase in the number of tries created (which all have to be
searched for each packet) and the memory size explosion and corresponding CPU
cache-miss rate (0.5 Gbyte for 10K rules)
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Figure 15: librte_acl memory footprint for increasingly larger random IPv4 5-tuple classi-
�ers

� SSE and AVX2 backends do not seem to di�er, classi�er is not CPU-bounded (will
re-check this at 40Gbps)
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